
1 December 2000 Delphi Informant Magazine

December 2000, Volume 6, Number 12

Cover Art By: Arthur Dugoni

ON THE COVER
7 In Development
Implementing COM+ Events — Binh Ly
Binh Ly introduces the COM+ loosely-coupled event (LCE) system, and
demonstrates its three core concepts: the event class, the event publisher,
and the event subscriber.

FEATURES
13 On Language
New List Objects — Jeremy Merrill
Jeremy Merrill demonstrates classes from the new Contnrs unit, such
as TObjectList and TComponentList which can manipulate objects and
components without additional code.

18 Greater Delphi
Two Office Web Components — Alex Fedorov
Alex Fedorov puts two of the Office Web Components (OWC) through
their paces, to easily add — for example — a bit of Microsoft Excel
functionality to your Delphi applications.

24 At Your Fingertips
Fancy Menus, etc. — Bruno Sonnino
Bruno Sonnino begins his new tips column by showing us how to
rotate text, create special lines, and customize menus with various fonts,
bitmaps, shapes, and colors.

29 Case Study
ASSESS — Denis Perrotti
Denis Perrotti explains how Delphi was the perfect tool for developing
ASSESS, in contrast to the experience with Visual Basic and its requisite
tours of DLL hell and VBX purgatory.

REVIEWS
31 LEADTOOLS Raster Imaging 12
 Product Review by Bill Todd

34 Wireless Web Development
 Book Review by Mike Riley

36 Advanced Delphi Developer’s Guide to ADO
 Book Review by Alan C. Moore, Ph.D.

DEPARTMENTS
2 Symposium Guest Editorial by Michael Pence
3 Delphi Tools
6 Newsline
37 Best Practices by Clay Shannon
38 File | New by Alan C. Moore, Ph.D.

Symposium
I’ve Got a Secret

Let’s create a development environment that combines the ease-of-use of VB with the power of OOP and C++.
i Let’s make it component based, but still able to statically compile for maximum performance and minimal DLL

conflicts. We’ll have it support Microsoft technologies better and sooner than VB, and we’ll even create a Linux version
for cross-platform development.
2

Then let’s keep it a secret.

S
y
T
a
t

W
s
e
h
F

B
e
w
k
c
t
U

O
p
T
B
(
1
t
J
D

T
h
t
g
m
h
o

ound familiar? If you’re a long-time Delphi developer, as I am,
ou recognize this truth-is-stranger-than-fiction scenario all too well.
hrough several management upheavals, countless premature obitu-

ries by industry pundits, and dizzying swings in business strategy,
here’s been one constant: pathetic marketing.

e all slept through the “On Time, On Budget” campaign, carefully
ynchronized with the “Inprise” branding fiasco. Now, as the Inprise
mblem has slowly crept into the shadow of the Borland name, we
ave the “Webvolutionaries” campaign, seemingly inspired by Elmer
udd. Brilliant.

orland makes better development tools than Microsoft, or anyone
lse. They make the best application server out there, but who
ould know? They are the Mercedes of developer tools, with the mar-
eting strength of a Daewoo. Allaire, Embarcadero, Scour.com, and
ountless others leverage Delphi as their “secret weapon,” producing
op-notch software in record time, because they know The Secret.
nfortunately, they’re in the minority.

n this late August day, Dice.com is trumpeting some 153,752 open
ositions. Of those, only 627 are matches for jobs requiring Delphi.
hat’s one in every 245 jobs, or 0.4%. Compare that to 14,950 Visual
asic jobs, approximately one in every 10, or 9.7%. And Java? Java

not JavaScript) weighs in with 29,073 — one in every 5 jobs — or
8.9%! So our admittedly unscientific, but still relevant, search shows
hat, for every 200 IT jobs across the US, approximately 38 will be
ava jobs, 20 will be Visual Basic jobs, and less than one will be a
elphi job.

he persistent lack of exposure of Delphi and other Borland tools
as left those who have invested their time and talents in Borland
echnologies scrambling to diversify. “Borland continues to make
reat solutions, but to attract desirable business I have added better-
arketed solutions from other vendors. Personally, I find myself

aving to weigh the market presence of competing solutions as much,
r more than, the technical aspects. Marketing matters,” notes Kyle
 December 2000 Delphi Informant Magazine
Cordes, a Delphi and Java consultant and editor of The BDE Alter-
natives Guide at http://kylecordes.com/bag. Anthony DiAngelus, a
senior architect and consultant from Tampa, Florida concurs. “Unfor-
tunately, I’ve had to rely on my other skills as an Oracle DBA, rather
than be a full-time Delphi developer. The work just isn’t there, and I
can only point the finger at the marketing group. Delphi is the best
development tool I have, but corporate America just doesn’t know
about it.”

Is it just a case of Borland being another aim-impaired David against
the Goliath of Redmond? Certainly, it’s not easy to market against
Microsoft’s tools division, which is heavily stocked with ex-Borland-
ers, and has very deep pockets. However, companies like WebGain
(http://www.webgain.com) are successfully bundling top-quality tools
— and getting noticed. Just try to get through an InfoWorld or
other trade magazine and not see them. Where is Borland’s bundling
strategy and marketing presence? Aiming to be Switzerland doesn’t get
you on many people’s maps.

In their defense, Borland has begun, finally, to target the VB
community with their latest campaign, featuring the promise of a
Linux-based RAD tool in Kylix (http://www.vbforlinux.com) and
aggressively distributing functional demonstration versions of Delphi
in publications like Visual Basic Programmer’s Journal. But is it too
little, too late?

Kylix may be a reality by the time you read this, but the Linux market
is still an emerging one. The Windows market will continue to
flourish for many years, and Delphi — the most powerful Windows
development environment available — will go the way of FoxPro
unless someone turns the lights on at Borland marketing.

— Michael Pence

Michael Pence (mikepence@yahoo.com) lives in Phoenix with his wife, Denise, and
children, Ryan and Becca, and Sammy the puppy. He’s been an analyst and program-
mer for 10 years, using Java, Delphi, Visual Basic, and other tools. He is also founder
of The Delphi Advocacy Group (http://www.egroups.com/group/tdag), a mailing list
for Delphi users.

http://kylecordes.com/bag
http://www.webgain.com
http://www.vbforlinux.com
http://www.egroups.com/group/tdag

3 December 2000 Delphi Informant Magazine

Delphi

T O O L S

New Products
and Solutions

Win32 Multimedia API
Alan C. Moore, Ph.D.

Wordware Publishing, Inc.

ISBN: 1-55622-666-7
Price: US$54.95

Web Site: http://www.
ComputerBookstore.com

Advanced Delphi Developer’s
Guide to ADO

Alex Fedorov and Natalia Elmanova
Wordware Publishing, Inc.

ISBN: 1-55622-758-2
Price: US$59.95

Web Site: http://www.
ComputerBookstore.com
Opaque Software Announces WithPalette 5 and WithView 5

ers. WithView adds a toolbar Code Explorer can be brought
 Opaque Software announced the

release of WithPalette 5 and With-
View 5, the latest versions of the
company’s IDE experts for Delphi
4 and 5 and C++Builder 4 and 5.
 WithPalette is an expert designed
to enhance the IDE by making it
easier for the developer to place
components on forms. WithPal-
ette lets developers instantly add
a component to any form with a
right-click of the mouse.
 WithPalette can be used with
or without the IDE’s Compo-
nent palette. WithPalette allows
the developer to hide the stan-
dard IDE Component palette,
providing more screen space,
yet allow quick access to all pal-
ette components. Also, WithPal-
ette can be configured to give
quick access to favorite or most-
recently-used components.
 WithView is designed to
enhance the IDE by making it
easier for developers to navigate
the various windows and design-
and a menu containing every
open window in the IDE, allow-
ing the developer to select any
window with a click of the
mouse. The keyboard can also be
used to select any window using
the WindowSwitcher (similar to
pressing AT).
 WithView can automatically
“bring to front” the Object
Inspector when a form in the
IDE is selected. Likewise, the
rase,
forward when the Editor window
is used. The developer can also
make any window in the IDE a
Stay-On-Top window or choose
to place any window on the Win-
dows Taskbar at the bottom of
the screen.

Opaque Software
Price: US$19 each.
Phone: (707) 451-8357
Web Site: http://www.opaquesoftware.com
Global Majic Announces 3DLinX

 Global Majic Software, Inc.
announced 3DLinX, a real-time
graphic rendering engine and
development tool designed to
make realistic 3D applications
easier to create. 3DLinX uses
COM and ActiveX to bring
models to life that are aware
of each other, interact with one
another, obey the laws of phys-
ics, and have unique behavior
and characteristics.
 Developers can command
properties, methods, and events
of 3DLinX objects. 3DLinX can
be used with a developer’s favor-
ite programming environment,
including Delphi, C++Builder,
Web pages, and others. It also
provides design-time scene visu-
alization, allowing the program-
mer to interact with the scene at
design time.
 3DLinX developers do not
need to worry about incor-
porating complex mathematics,
accessing complex graphics
APIs, optimizing rendering
code, detecting collisions,
implementing multi-threading
optimizations, exploiting mul-
tiple CPUs and hardware
acceleration, and applying tex-
tures, transparencies, lights, 3D
sounds, perspectives, projec-
tions, screen overlays, and other
complex functions.
 The 3DLinX Standard Edition
includes loaders for importing
models in 3D Studio, Version
3.0 (.3ds); Open Flight, Version
14.2, 15.x (.flt); and Cory-
phaeus, Version 3.0-4.2 (.dwb).
Additional loaders will be avail-
able as add-ons.
 3DLinX supports SGI RGB
(RGB, RGBA, INT, INTA,
BW); BMP; TGA (24- and
32-bit); TIF (uncompressed
8-bit and 24-bit); and JPEG
(8-bit and 24-bit).
 3DLinX also provides a mech-
anism for concealing valuable
source code, as well as a linking
feature.
 Add-on products can be
added to the 3DLinX architec-
ture, including Living Models;
Keyframes and Inverse Kinemat-
ics capabilities for animators and
game developers; and others.

Global Majic Software, Inc.
Price: US$895
Phone: (877) 3DMAJIC
Web Site: http://www.3dlinx.com
word in every document in
 SilverLakeTech.com do Boolean, proximity, ph
SilverLakeTech.com Announces PC Data Finder
announced PC Data Finder, a
PC search engine that enables
the user to find anything on a
hard drive or removable drive.
 PC Data Finder will do
searches through ZIPs, PDFs,
HTML, files with Office Suite
extensions, and many others.
PC Data Finder can also
and wildcard searches on
documents in any directory
or drive.
 PC Data Finder can also
search a user’s e-mail by Body,
Title, Keywords, Subject,
Author, To, Date, Header,
Footer, or Operator. PC Data
Finder works by indexing every
the directories you choose to
index. This enables the user to
search for a document based on
its content.

SilverLakeTech.com
Price: US$99.55
Phone: (973) 259-9300
Web Site: http://www.silverlaketech.com

http://www.opaquesoftware.com
http://www.3dlinx.com
http://www.ComputerBookstore.com
http://www.ComputerBookstore.com
http://www.ComputerBookstore.com
http://www.silverlaketech.com

4 December 2000 Delphi Informant Magazine

Delphi

T O O L S

New Products
and Solutions

SQL Queries for Mere Mortals
Michael J. Hernandez and

John L. Viescas
Addison-Wesley

ISBN: 0-201-43336-2
Price: US$39.95

Web Site: http://www.
ComputerBookstore.com

Linux System Administration
M. Carling, Stephen Degler,

and James Dennis
New Riders

ISBN: 1-56205-934-3
Price: US$29.99

Web Site: http://www.
ComputerBookstore.com
TurboPower Announces Sleuth QA Suite 2
pages within a multi-page TIFF
 TurboPower Software Co.
announced Sleuth QA Suite 2,
a new version of the company’s
quality assurance tools suite for
professional programmers. With
Sleuth QA Suite 2, developers can
find bugs, optimize program per-
formance, and test the projects
they develop. Sleuth QA Suite 2
includes five tools.
 Sleuth CodeWatch tracks
down hard-to-find memory and
resource leaks; tests for improper
use of Microsoft Windows API
calls; tests to ensure that API calls
used in a program will be avail-
able on the developer’s target plat-
form; and reports errors to the
line of source code where they
start.
 Sleuth StopWatch times pro-
gram execution at a macro level
and reports exactly how much
time is consumed by each routine
in a project. Built-in KeyViews
provide easy access to commonly
required information, such as
“The Top 10 Most Time Con-
suming Routines” and “The Top
25 Most Called Routines.”
 Sleuth LineProfiler times pro-
gram execution at the source-line
level. Developers can get accurate
timing statistics for any or all of
the lines of their projects.
 Sleuth CoverageAnalyst tracks
the number of times individual
lines of a project are executed and
visually indicates the portions of
the project that have not been
adequately tested.
 Sleuth ActionRecorder records
keyboard and mouse interac-
tions for unattended, auto-
mated test suites. Recorded
actions can be saved as XML
data files.
 In addition, all tools in Sleuth
QA Suite 2 feature the ability
to export data from KeyViews
to XML, HTML, or Microsoft
Excel spreadsheet files; support
for all 32-bit versions of
Borland Delphi, Borland
C++Builder, and others; COM
Automation support so devel-
opers can access and use the
debugging and optimization
services of the suite from their
own programs, without having
to use the tool’s user interface;
TurboPower’s Dynamic Instru-
mentation technology; and an
improved user interface with
full support for docking and
access to syntax-highlighted
source code and advanced dis-
assembly listings (where appli-
cable).

TurboPower Software Co.
Price: US$399
Phone: (800) 333-4160
Web Site: http://www.turbopower.com
SkyLine Tools Imaging Releases Doc-to-Net 6.0

 SkyLine Tools Imaging
announced Doc-to-Net 6.0, a
new version of the company’s
turnkey solution for sharing doc-
uments over the Internet by
transforming TIFF files to a
browser-compliant format.
 Doc-to-Net 6.0 is a CGI appli-
cation that transforms a scanned
TIFF image to a PNG, GIF, or
JPEG, then anti-aliases it “on
the fly” and streams it through
the browser. This allows the end
user to view the document with-
out downloading any plug-ins.
Also included are zoom, pan,
and scroll features, plus rotating
and inverting controls.
 New features in version 6.0
include a COM object for ASP
pages, which will return the
number of pages in a multi-page
TIFF file; the ability to recognize
and return sizes of varied size
file; fewer required DLLs; a
UNC path name feature, allow-
ing files on different computers
within a system to be accessed
by the same server; and password
protection.
 For photographic images, Doc-
to-Net supports BMP, PCX, and
TGA files, and presents them as
JPEG, PNG, or GIF files. Image
correction tools are provided for
images.
 Developers who wish to utilize
Doc-to-Net as a part of an inde-
pendent programming applica-
tion can leverage it as an add-on
to SkyLine Tools’ Corporate
Suite. Doc-to-Net is royalty free.

SkyLine Tools Imaging
Price: US$599
Phone: (818) 346-4200
Web Site: http://www.imagelib.com
Quest Announces Optional Module for TOAD

 Quest Software, Inc.
announced TOAD DBA, an
optional module for its TOAD
application development soft-
ware that adds database admin-
istration functionality to address
common Oracle database man-
agement tasks.
 Utilizing a simple graphical
user interface, Oracle database
administrators have an easier
way to handle database manage-
ment tasks, such as adding data
files, managing disk space, creat-
ing or modifying user accounts,
implementing database security,
and creating or scheduling batch
jobs — and they can perform
these tasks from within the
development environment.
 TOAD DBA has a number
of specific features that help
with the most common database
management tasks, including
schema compare and synchro-
nize, SQL data load and export,
and batch job scheduling and
management. It also provides the
ability to run DBA reports.
 Another significant feature is
Tablespace Management. Once
users confirm that a particular
tablespace is nearly out of disk
storage space, they can log into
the database, confirm current
space allocations, and add disk
space as needed.
 The original TOAD devel-
opment software allows develop-
ers to build, test, and debug
PL/SQL packages, procedures,
triggers, and functions, and it
allows users to create and edit
database tables, views, indexes,
constraints, users, and roles.
TOAD integrates with version
control systems, schema manage-
ment solutions, and SQL tuning
and impact analysis tools.

Quest Software, Inc.
Price: US$495
Phone: (949) 754-8000
Web Site: http://www.quest.com

http://www.ComputerBookstore.com
http://www.ComputerBookstore.com
http://www.turbopower.com
http://www.imagelib.com
http://www.quest.com

5 December 2000 Delphi Informant Magazine

Delphi

T O O L S

New Products
and Solutions

Linux Essential Reference
Ed Petron

New Riders

ISBN: 0-7357-0852-5
Price: US$24.95

Web Site: http://www.
ComputerBookstore.com

Learning Red Hat Linux
Bill McCarty

O’Reilly

ISBN: 1-56592-627-7
Price: US$34.95

Web Site: http://www.
ComputerBookstore.com
 eHelp Corp. announced it systems for dep
eHelp Launches RoboHELP Office 9.0
is shipping RoboHELP Office
9.0, the latest version of the soft-
ware tool for developing Help
systems. RoboHELP Office 9.0
automates the process of creating
Help and assistance for Web
sites and Web-based applica-
tions, allowing end users to
answer questions and resolve
problems themselves.
 RoboHELP Office uses Help-
style navigation and features
that users are familiar with
from their desktop applications
(table of contents, index, full-
text search, associative linking,
browse sequences, etc.).
 RoboHELP supports major
online Help formats, including
WebHelp, Microsoft HTML
Help, WinHelp, JavaHelp,
Oracle Help for Java, and more,
and allows users to create Help
loyment on any
platform.
 RoboHELP Office 9.0 features
include integrated support for
popular HTML editors, such
as Dreamweaver, FrontPage, and
HomeSite; a built-in HTML
other applications become dis-
editor with dozens of new features;
and enhanced WebHelp 4.0.

eHelp Corp.
Price: US$899
Phone: (800) 358-9370
Web Site: http://www.ehelp.com/robohelp
4Tier Software Announces OpenMOM

objects between heterogeneous
 4Tier Software announced

the release of OpenMOM, which
allows the deployment of
component-based distributed
Internet applications. With Open-
MOM, Delphi, C/C++, Java, and
tributed communicating compo-
nents deployed within a multi-tier
model over the Internet.
 OpenMOM manages the
exchange and morphing of
software components via its
asynchronous/synchronous mes-
saging infrastructure, as well as
interconnecting message brokers
that ensure maximum security,
load balancing, and the availabil-
ity of the distributed informa-
tion systems.
 Some features of OpenMOM
include object morphing,
dynamic load balancing, multi-
threaded architecture, broadcast
and multicast messaging, fault
tolerant and multiple broker
architecture, and GUI-based
administration and configuration.

4Tier Software
Price: Free for development and deployment
with up to three computers connected.
Phone: (33) 1 39 76 80 20
Web Site: http://www.4tier.com
mance enhancements, context-
 Advanced Software Tech- sive visual blueprints of Java,
Advanced Software Technologies Unveils GDPro 5.0
nologies, Inc. announced the
release of GDPro 5.0, an
upgrade to the company’s
UML visual modeling solution
for accelerating software design
and collaborative development.
This new version allows appli-
cation developers to create and
communicate across the enter-
prise using simple, comprehen-
C++, and IDL.
 New features include a
Web System Browser Report,
with functionality that allows
developers to produce and
share comprehensive diagrams
of their software designs over
the Internet.
 Other new features include
Java Reverse Engineering perfor-
sensitive pop-up Windows to
speed diagram population, and
a Rational Rose diagram import
feature.

Advanced Software Technologies, Inc.
Price: US$2,995 for Windows; US$4,795
for Unix.
Phone: (800) 811-2784
Web Site: http://www.advancedsw.com

http://www.ehelp.com/robohelp
http://www.4tier.com
http://www.advancedsw.com
http://www.ComputerBookstore.com
http://www.ComputerBookstore.com

6 December 2000 Delphi Informant Magazine

News

L I N E

December 2000
 Elk Grove, CA — Delphi Informant Magazine announced the official ballot for the 2001 Delphi
Readers Choice Awards is now available online at http://www.DelphiZine.com.
 Each year, Delphi Informant Magazine recognizes outstanding products and vendors in the Delphi
add-on market that you select. Please take a moment to vote for your favorite Delphi tools in 19
categories, including Best Book, Best Reporting Tool, and Product of the Year. Simply complete
the online ballot. This is your chance to voice your opinion regarding the tools and products you
use every day.
 Voting ends January 31, 2001. The results will be published in the April 2001 issue of Delphi
Informant Magazine.

It’s Time to Vote in the Delphi Informant Magazine Readers Choice Awards
Inprise/Borland Announces JBuilder 4

platform that supports Java 2 deploy EJB instantly without

 Scotts Valley, CA — Inprise/ enhanced EJB transaction sup-
 Scotts Valley, CA —
Inprise/Borland announced Bor-
land JBuilder 4, the latest
version of its pure-Java cross-
platform development
environment. JBuilder 4 sup-
ports Enterprise JavaBean (EJB)
1.1-compliant development on
Windows, Linux, and Solaris
platforms.
 JBuilder 4 streamlines the con-
current management of source
code for large distributed teams
while extending existing source
code management across the
Internet.
 JBuilder 4 features new visual
two-way tools, designers, and
wizards, such as the entity Bean
modeler, which shortens the
development and deployment of
e-business applications; Internet-
Beans, JSP, and servlets for
building data-driven Web appli-
cations; support for Java 2 ver-
sion 1.3 with built-in support
for the Sun Java HotSpot Virtual
Machine; JDataStore 4, a pure-
Java Object Relational Database
Management System for Web,
mobile, and embedded applica-
tions; and remote debugging on
Windows, Linux, Solaris, or any
JPDA, such as HP-UX, AIX,
Tru64.
 JBuilder 4 is integrated
with the Borland Application
Server and supports BEA’s Web-
Logic server. Users can run and
debug EJBs and CORBA appli-
cations locally or remotely in
the JBuilder environment and
shutting down the application
server.
 JBuilder 4 will be available in
three versions: JBuilder 4 Enter-
prise, JBuilder 4 Professional,
and JBuilder 4 Foundation. For
more information, visit http://
www.borland.com/jbuilder, or
call (800) 632-2864.

 Availability of Inprise
Inprise/Borland Announces
Application Server 4.1
Borland announced the ship-
ment and availability of the
Inprise Application Server 4.1.
Inprise Application Server pro-
vides a foundation for cus-
tomers to deploy Internet
applications with full support
for Enterprise Java Bean (EJB)
and CORBA technology. This
technology allows companies
whose business models are
based around large volumes of
transactions, such as financial
institutions, to closely integrate
their existing systems with the
new EJB environment.
 New features of Inprise Appli-
cation Server 4.1 include Wire-
less Access Protocol support;
port with full two-phase commit
VisiTransact, a transaction man-
ager supporting JDBC 2.0/XA;
VisiMessage; advanced object to
relational mapping for EJBs;
integration support for Thought
Inc.’s CocoBase and other third-
party O/R mapping tools; an
enhanced user interface; and
new wizards to simplify rolling
EJB applications out to multiple
containers.
 Inprise Application Server 4.1
is available immediately from
local Inprise/Borland offices, dis-
tributors, and representatives.
For more information on Inprise
Application Server, visit http://
www.borland.com/appserver.
Inprise/Borland to Support Intel Itanium Processor

 San Jose, CA — Inprise/
Borland announced it will port
Borland JBuilder, Inprise Appli-
cation Server, VisiBroker for
Java, and JDataStore for plat-
forms based on the Intel Ita-
nium processor. The software
will be ported to the Microsoft
Windows 2000 64-bit and Red
Hat Linux 64-bit operating
systems running Java 2 v1.3
runtime from IBM. All Inprise/
Borland offerings on Intel
IA-64 architecture (IA-64) —
including Itanium processor-
based systems — will be com-
patible with what’s available on
IA-32 today. This will enable
companies who use Inprise/
Borland’s integrated Java tool
set to easily move their appli-
cations running on IA-32-based
systems today to IA-64-based
systems of tomorrow.
 The Intel Itanium processor
is the first in a family of IA-64
processors from Intel and is
the most significant new devel-
opment in Intel microprocessor
architecture since the 386-pro-
cessor introduction in 1985. The
Itanium processor will com-
plement today’s Pentium III
processor and Intel Pentium
Xeon 32-bit processor families
with new features of high-end
scalability, reliability, availability,
and large memory addressability.
More information on the Intel
Itanium processor is available at
http://developer.intel.com/
design/ia-64.

http://www.borland.com/jbuilder
http://www.borland.com/jbuilder
http://www.borland.com/appserver
http://www.borland.com/appserver
http://developer.intel.com/design/ia-64
http://www.DelphiZine.com

7 December 2000 Delphi Informant Magazi

In Development
COM+ / Delphi 5 / Windows 2000

By Binh Ly
Implementing COM+ Events
Exploiting the Windows 2000 COM+ Event System

One of the more interesting features of COM+ (the new version of COM for Microsoft
Windows 2000) is the introduction of a new event mechanism for developing

scalable distributed systems. To appreciate the COM+ event system, it’s important to first
understand how events were implemented in the pre-COM+ era.
n

Pre-COM+ events fall into two main categories:
§ COM connection points are a standard

way of negotiating event interfaces between
the source and the receiver of the events.
This structured negotiation is dictated by
the architecture of some standard COM
interfaces, such as IConnectionPoint and
IConnectionPointContainer.

§ COM callbacks are a low-level, application-
specific way of negotiating event interfaces
between the source and the receiver of the
events. This negotiation usually requires a
custom architecture, specific to an application
or part of an application.

I won’t go into the technical details of COM connec-
tion points and COM callbacks; that’s not the goal
of this article. (For more information on these two
techniques, refer to my two-part series in the June
and July 1998 issues of Delphi Informant Magazine.)

One of the major characteristics of pre-COM+
events is that the source and the receiver of events
are tightly integrated:
§ Before events can be triggered, the event source

and receiver must be simultaneously running
and available. If either is unavailable, no event
can be successfully triggered.

§ The event receiver always has “pre-compiled”
knowledge of the event source. The event
receiver will almost always know which par-
ticular COM class to instantiate as the event
source, and this knowledge is hard-coded and
compiled into the event-receiver application.

§ The infrastructure is somewhat biased
and caters to a one-to-one correspondence
e

between the event source and receiver. For
instance, it can take an effort to implement
multiple event receivers (particularly as sepa-
rate applications) to receive events from a
single event source.

Because of these behaviors, the pre-COM+ event
infrastructure is often referred to as a tightly cou-
pled event (TCE) system. The term “tightly cou-
pled” denotes the strong and intimate dependency
between the event source and receiver objects.

A tightly coupled event system has its place, and
has been used successfully over the years, e.g. for
implementing the ActiveX controls event mecha-
nism. Unfortunately, with today’s applications rap-
idly moving toward high-speed, enterprise-scale
environments, such as Web applications, new event
requirements have surfaced that are difficult to sat-
isfy with a TCE solution.

A Hypothetical Retail Application
To introduce some of the requirements of a dis-
tributed event system, imagine that we are build-
ing the Purchase Order part of a hypothetical
retail application named the The Best. (The code
for the sample application is available for down-
load; see end of article for details.) Specifically,
we’re in charge of an Order business component
whose interface implements a simple purchase-
order placement transaction as follows:

IOrder = interface
 procedure PlaceOrder(CustomerID, ProductID,
 Quantity);
end;

Figure 1: The OrderEvents event class definition as it appears in
the Type Library editor.

unit
OrderEvents;

interface

uses
 Windows, ActiveX, Classes, ComObj, TheBestEvents_TLB,
 StdVcl;

// OrderEvents event class.
type
 TOrderEvents = class(TAutoObject, IOrderEvents)
 protected
 procedure OrderPlaced(
 const CustomerID, ProductID: WideString;
 Quantity: Integer); safecall;
 end;

implementation

uses
 ComServ;

procedure TOrderEvents.OrderPlaced(const CustomerID,
 ProductID: WideString; Quantity: Integer);
begin
 // Event class methods are not implemented.
end;

initialization
 TAutoObjectFactory.Create(ComServer, TOrderEvents,
 Class_OrderEvents, ciMultiInstance, tmApartment);
end.

Figure 2: This module describes the OrderEvents event class.

In Development
CustomerID refers to the customer placing the order, ProductID
specifies the product being ordered, and Quantity specifies how
many products are being ordered.

Let’s assume our business requirements are as follows:
1) Every time an order transaction is placed, an e-mail message must

be sent to a known back-end mail server, where another routine
will take control and start the process of filling the order.

2) Every time an order transaction is placed for a particular product
(ProductID), we’ll need to log that into the system. This log is
used by other statistical applications that will analyze purchase
patterns of customers and experimental products. Experimental
products change regularly, so it would be nice to have an imple-
mentation for this that isn’t unduly impacted by product changes.

Obviously, a brute-force way to implement these requirements is to
hard-code the business processes into the IOrder.PlaceOrder imple-
mentation. However, we can look at these requirements from a
different angle, and conclude that we may want to trigger some kind
of event every time an order is placed. Other business processes or
components can then “listen in” on this event to perform the desired
operation, based on our current (and future) business requirements.

Using an event-based approach, it’s easy to see that:
§ Requirements 1 and 2 don’t need to be implemented by a

single business application/component; requirement 1 can be
implemented by one business component, and requirement 2 by
another. The only commonality among the business components
is that they both listen in on the same event. Furthermore, future
requirements can be implemented by adding newer business
components without modifying our existing application.

§ Requirements 1 and 2 don’t require an application continu-
ously running somewhere “out there,” listening for an event;
we only need to execute a business process/component when-
ever an event is triggered.

§ One powerful idea would be to allow easy configuration of each
business component that listens in on the event, or even the
configuration of the event itself. We might need to turn the
event on and off at certain times (such as when doing back-end
maintenance). We may also need to disable one business process
independently of the other. For example, we may need to tempo-
rarily disable the business component that handles requirement 2,
without affecting the business process handling for requirement 1.

Unfortunately, the nature of pre-COM+ event systems, such as connec-
tion points and callbacks, does not meet these requirements. COM+
introduces a new concept, called a loosely coupled event (LCE) system,
for such enterprise-scale requirements. It’s based on three core concepts:
the event class, the event publisher, and the event subscriber.

COM+ Event Infrastructure
Using our example, we need some sort of concrete entity to represent
the event that gets triggered every time IOrder.PlaceOrder is executed.
This concrete entity is called an event class. An event class is nothing
more than a simple COM class (a CoClass plus interface) definition
of the event. Let’s define our OrderEvents event class as follows:

IOrderEvents = interface
 prodecure OrderPlaced(CustomerID, ProductID, Quantity);
end;

OrderEvents = CoClass
 implements IOrderEvents
end;
8 December 2000 Delphi Informant Magazine
This representation means that OrderEvents is an event class that
implements the IOrderEvents interface, which contains an OrderPlaced
event method.

An important thing to understand about event classes is that we
never implement the methods of the event class interface. We
simply define the interface, and then install it into the COM+
environment (see Figure 1).

To further understand what I mean, let’s take a look at the
Delphi implementation of an event class. Figure 2 illustrates the
OrderEvents event class (TheBestEvents.dpr). This module was
created using Delphi’s Automation Object Wizard (File | New

| ActiveX | Automation Object) and using “OrderEvents” as the
CoClass name.

At this point, you might be wondering how this event is physically

uses
 TheBestEvents_TLB;

procedure TOrder.PlaceOrder(
 const CustomerID, ProductID: WideString;
 Quantity: Integer);
var
 OrderEvents: IOrderEvents;
begin
 // Step 1:
 // Perform PlaceOrder business logic here.
 // Example: Update Order table in database.

 // Step 2:
 // Trigger OrderEvents.
 // Create OrderEvents event class.
 OrderEvents := CoOrderEvents.Create;
 // Execute OrderEvents.OrderPlaced event.
 OrderEvents.OrderPlaced(CustomerID, ProductID, Quantity);
end;

Figure 3: Triggering the event from the PlaceOrder method of
the TOrder class.

In Development

Figure 4: Component Services after creating an empty COM+
application, The Best.

Figure 5: The COM Component Install Wizard.
triggered. The answer is simple: We create an instance of the
OrderEvents CoClass, and call the OrderPlaced method from
that instance:

uses
 TheBestEvents_TLB;

procedure TriggerEvent;
var
 OrderEvents: IOrderEvents;
begin
 // Create OrderEvents event class.
 OrderEvents := CoOrderEvents.Create;
 // Execute OrderEvents.OrderPlaced event.
 OrderEvents.OrderPlaced('A Customer', 'A Product', 5);
end;

To put that in context, let’s trigger this event from within the PlaceOrder
method of the Order business component, as shown in Figure 3.

The process of triggering a COM+ event works only if we properly
install the OrderEvents event class into the COM+ environment. The
process of installing an event class for everybody to see is known as
publishing the event. The party that publishes an event is called the
event publisher. In our case, the publisher of the OrderEvents event
class is our retail application, The Best.

Publishing Events
An event class can be published administratively (interactively) or
programmatically. I will only demonstrate administrative publishing;
programmatic publishing requires knowledge of programmatic access
to the COM+ administration APIs that is beyond the scope of
this article. Before we can publish an event class, we first need to
build the COM server that defines the event class. This is contained
in the project, TheBestEvents.dpr. Building this project produces
TheBestEvents.dll, which we’ll install into the COM+ environment.

First, we’ll need to run the Component Services administration tool,
and create a new COM+ application in it. Component Services is
accessible from the Windows 2000 Control Panel, under Administra-

tive Tools | Component Services. To do this, right-click on COM+
Applications and select New | Application from the pop-up menu. The
COM Application Install Wizard will be displayed.

Select Create an empty application, and click on Next to advance to the
Create Empty Application screen. Then enter “The Best” as the name
for the new application, select Server application as the Activation type,
and click on Next to advance to the Set Application Identity screen.
Select Interactive user as the Account and click on Next. Click Finish
on the next screen to complete the wizard and return to Component
Services, where The Best will now appear as a new, empty COM+
application (see Figure 4).

The next step is to install OrderEvents as an event class into applica-
tion, The Best. To do this, right-click on Components under The Best,
and select New | Component. The COM Component Install Wizard
will be displayed (see Figure 5). Select Install new event class(es) and
click Next. Browse to the TheBestEvents.dll file, and select it to
advance to the Install new event class screen. Click Next, then Finish
to complete the wizard.

We’ve learned what an event class is, how it’s installed, and how it’s
called to trigger events. The next step is to understand how we can
listen in on an event.
9 December 2000 Delphi Informant Magazine
Subscribing to Events
Listening for a COM+ event is known as subscribing to the event. The
party that subscribes to a COM+ event is called an event subscriber. An
event subscriber is physically implemented as a class that implements

In Development

Figure 7: The EMailer CoClass in the Type Library editor.

unit OrderLogger;
the event interface(s) of a COM+ event class. A subscriber component
can be a persistent or a transient subscriber. A persistent subscriber is
one that can be installed and administered via the COM+ environ-
ment. It doesn’t need to be running to receive event notifications. In
contrast, a transient subscriber cannot be administered via the COM+
environment, and must be running to receive event notifications.

For our purposes, we’ll build two persistent subscribers that
implement the two requirements mentioned earlier in this
article. The first subscriber implements sending out an e-mail
notification every time IOrderEvents.OrderPlaced is triggered.
Let’s call this subscriber EMailer. EMailer is implemented in
TheBestSubscribers.dpr, as shown in Figure 6. This module was
created using the Delphi Automation Object Wizard and using
“EMailer” as the CoClass name.

It’s important to point out that EMailer implements the IOrderEvents
event interface. More importantly, this needs to be reflected in
the type library information for EMailer. To do this, view the
TheBestSubscribers.tlb in the Delphi Type Library editor, and select
the Uses page. Right-click to display the pop-up menu, and select
Show All Type Libraries. Page down to TheBest Event Classes and select it.

Now we need to associate the IOrderEvents interface with the EMailer
CoClass. To do this, click on the EMailer CoClass (while still in the
Type Library editor), and select the Implements page. Right-click to
10 December 2000 Delphi Informant Magazine

unit EMailer;

interface

uses
 ComObj, ActiveX, TheBestSubscribers_TLB,
 TheBestEvents_TLB, StdVcl;

// EMailer subscriber.
type
 TEMailer = class(TAutoObject, IEMailer, IOrderEvents)
 protected
 procedure OrderPlaced(
 const CustomerID, ProductID: WideString;
 Quantity: Integer); safecall;
 procedure SendEMail;
 end;

implementation

uses
 ComServ, Dialogs, SysUtils;

// IOrderEvents.OrderPlaced subscription implementation.
procedure TEMailer.OrderPlaced(const CustomerID,
 ProductID: WideString; Quantity: Integer);
begin
 SendEMail;
 ShowMessage('EMail Processing completed!' + #13 +
 'Customer: ' + CustomerID + ', Product: ' + ProductID +
 ', Quantity: ' + IntToStr(Quantity));
end;

procedure TEMailer.SendEMail;
begin
 // Do e-mail business logic here.
end;

initialization
 TAutoObjectFactory.Create(ComServer, TEMailer,
 Class_EMailer, ciMultiInstance, tmApartment);
end.

Figure 6: EMailer subscriber code.
display the pop-up menu, and select Insert Interface. Select
IOrderEvents from the displayed dialog box and click OK. The result
is shown in Figure 7.

Building the OrderLogger subscriber is very similar to EMailer.
OrderLogger is also implemented in TheBestSubscribers.dpr, as shown
in Figure 8. This module was created using the Automation Object
interface

uses
 ComObj, ActiveX, TheBestSubscribers_TLB,
 TheBestEvents_TLB, StdVcl;

// Order Log subscriber.
type
 TOrderLogger = class(TAutoObject, IOrderLogger,
 IOrderEvents)
 protected
 procedure OrderPlaced(
 const CustomerID, ProductID: WideString;
 Quantity: Integer); safecall;
 procedure LogOrder;
 end;

implementation

uses
 ComServ, Dialogs, SysUtils;

// IOrderEvents.OrderPlaced subscription implementation.
procedure TOrderLogger.OrderPlaced(
 const CustomerID, ProductID: WideString;
 Quantity: Integer);
begin
 LogOrder;
 ShowMessage('Order logging completed!' + #13 +
 'Customer: ' + CustomerID + ', Product: ' + ProductID +
 ', Quantity: ' + IntToStr(Quantity));
end;

procedure TOrderLogger.LogOrder;
begin
 // Do logging business logic here.
end;

initialization
 TAutoObjectFactory.Create(ComServer, TOrderLogger,
 Class_OrderLogger, ciMultiInstance, tmApartment);
end.

Figure 8: The OrderLogger unit.

In Development
wizard and using “OrderLogger” as the CoClass name. Also, note
the important type library information included with the OrderLogger
CoClass, as shown in Figure 9.

With these, we are now ready to install EMailer and OrderLogger
into the COM+ environment. To do this, we first build
TheBestSubscribers.dpr, creating TheBestSubscribers.dll. We then
install both components into a COM+ application using the Com-
11 December 2000 Delphi Informant Magazine

Figure 9: The OrderLogger definition in the Type Library editor.

Figure 10: Installing EMailer and OrderLogger subscribers.

Figure 11: Invoking the COM New Subscription Wizard.
ponent Services utility. For our purposes, let’s install these into the
application we created earlier, i.e. TheBest.

To do this, right-click on Components under The Best in Components
Services, and select New | Component. This will invoke the COM
Component Install Wizard. Select Install new component(s) at the
Import or Install a Component screen, and click Next. Browse to
TheBestSubscribers.dll file and select it to advance to the Install new
components screen (see Figure 10).

After installation, we then configure the event subscriptions. To
configure EMailer’s subscriptions, right-click on Subscriptions under
TheBestSubscribers.EMailer and select New | Subscription (as shown in
Figure 11) to display the COM New Subscription Wizard. The Select
Subscription Method(s) screen will be displayed; select IOrderEvents and
click Next. Then select TheBestEvents.OrderEvents at the select Event Class
screen and click Next. Make sure the Enable this subscription immediately
option is checked on the Subscription Options screen, click Next, then
Finish on the following screen to complete the wizard.
Figure 12: Component Services after configuring the subscrip-
tions for EMailer and OrderLogger.

Figure 13: Configuring OrderLogger’s subscription filter.

In Development
Next, perform the same process for OrderLogger subscription. When
you’re done, Component Services should look like Figure 12.

Subscriber Filters
Recall that one requirement for OrderLogger was that we want it
to log transactions only for certain products. Although this business
requirement can be realized by implementing conditional business
logic in TOrderLogger.OrderPlaced, we want the ability to configure
this product filter administratively, so we can easily change the filtered
product without a large maintenance impact on OrderLogger.
Fortunately, the COM+ event system has just the facility we need:
subscriber filters. A subscriber filter is a simple Boolean expression
that’s evaluated to determine if a subscriber should be notified of
certain events. As an example, let’s assume we want to log orders
for an experimental product named “New Product.” This is easily
configured, as shown in Figure 13.

Note that Filter criteria uses the ProductID taken from the specified
parameter name in the IOrderEvents.OrderPlaced method. The filter
criteria consists of a string Boolean expression. The expression is evalu-
ated by the COM+ event system before instantiation of the subscriber
component. This provides for an efficient filtering mechanism in
which subscribers aren’t unnecessarily instantiated if they aren’t “inter-
ested” in an event, based on certain conditions. The filter criteria can
also include Boolean operators, such as OR, AND, and NOT.

A Sample Application
Now that we’ve installed both subscriber business components,
we can then test their functionality. Before we do this, however,
let’s install the Order business component (discussed earlier) that
triggers the events. To do this, build the TheBest.dpr project and
install TheBest.dll into the COM+ environment. On my machine, I
simply added this into The Best.

To test the events, I’ve built a simple client application
(ExecuteOrder.dpr) that simulates a purchase order transaction (see
Figure 14). Performing a purchase order transaction is implemented
as shown in Figure 15.
12 December 2000 Delphi Informant Magazine

Figure 14: A simple purchase-order
client application.

uses
 TheBest_TLB;

procedure TForm1.ExecuteOrderClick(Send
var
 Order: IOrder;
begin
 // Create Order business component.
 Order := CoOrder.Create;
 // Execute Order.PlaceOrder business
 Order.PlaceOrder(CustomerID.Text, Pro
 StrToInt(Quantity.Text));
end;

Figure 15: Performing a purchase order tr
Assuming you’ve
installed the event
classes and
subscriptions correctly,
executing the
Order.PlaceOrder oper-
ation should produce
a message box from
the EMailer subscriber.
And changing the
Product edit box con-
er: TObject);

transaction.
ductID.Text,

ansaction.
tents to “New Product” should produce a message box from the
OrderLogger subscriber.

Conclusion
This article has walked through a simple example for which the
COM+ event system is a perfect solution. We’ve only scratched the
surface of COM+ events, however. I hope this serves as a good
introduction, and piques your interest enough for you to delve
more deeply into the details of implementing COM+ events in
your own applications. ∆

The files referenced in this article are available on the Delphi Informant
Magazine Complete Works CD in INFORM\00\DEC\DI200012BL.

Binh Ly is an independent consultant who specializes in developing
distributed systems using COM technologies. He also maintains a Web site
(http://www.techvanguards.com) that educates people on how to effectively
use COM technologies using Borland products. You can reach Binh at
bly@techvanguards.com.

13 December 2000 Delphi Informant Magazin

On Language
Delphi 5 / TList-related Classes / Contnrs Unit

By Jeremy Merrill

Figure 1: Commonly used public

Name Type

Count: Integer; property
Items[Index: Integer]: property
Pointer; default
New List Objects
Delphi 5’s New Classes Increase TList Class Abilities

Delphi 5 introduced a new Contnrs unit that defines eight new classes, all based on
the standard TList class. In this article, we’ll provide an overview of the TList class,

then explore these eight new classes in detail. We’ll also look at how to create custom list
classes, ending with the creation of a new TList descendant class, TIntList.
The TList Class
For those unfamiliar with a TList object, it simply
stores a list of pointers. In many ways it’s like
a dynamic array, with properties and methods
that allow addition, deletion, rearrangement, loca-
tion, access, and sorting of items within the
list. TList is often used to maintain a list of
objects (see the tables in Figures 1, 2, and 3).

The TObjectList Class
The primary class definition in the Contnrs unit
is TObjectList, which descends directly from the
TList class (see Figure 4). Given that most TList
objects are used to store a list of objects, this new
class may be the most useful contribution of the
Contnrs unit.

The first thing to notice about TObjectList is
that Add, Remove, IndexOf, Insert, and Items all
expect a type of TObject instead of Pointer. This
allows for more strict type checking at compile
time, and removes the need to type cast item
pointers as TObjects.

The second thing to notice is the addition of
the OwnsObjects Boolean property. This property
is the fundamental difference between TList and
TObjectList. When True (the default value), this
property directs TObjectList to free any objects
removed from its list. This includes the use of
the Delete, Remove, and Clear methods, as well
as when the TObjectList is itself destroyed. It’s
even smart enough to free an object that has been
replaced by the insertion of a new object into an
existing list position.
e

properties of the TList class.

Description

Returns the number of items in the list.
Allows access to items in a zero-based list.
Anyone who’s used TList to maintain a list of
objects will appreciate this feature. No more
loops to free objects before freeing the TList
object. No more freeing individual objects before
their removal. No more memory leaks caused by
bugs in the freeing code. This feature is so impor-
tant to this class that there’s even an overloaded
Create constructor that allows the setting of the
OwnsObjects property when the
TObjectList object is created.

One final note on this topic: When OwnsObjects
is True, the Extract method will remove the object
reference from the list, but will not free the
object. The Extract method was added to TList in
Delphi 5 for this purpose, even though the TList
implementation has Extract and Remove perform-
ing essentially the same function.

The last thing to notice about TObjectList is the
FindInstanceOf method. This function returns the
index of an object in the list that has the same class
as the one passed as the argument for AClass. If
AExact is True, only instances of that class are found.
If AExact is False, objects that inherit from AClass
will also be found. The AStartAt parameter can be
used to find multiple instances of a class within the
list, continually calling the FindInstanceOf method
with a starting index value one greater than the
index of the object last found, until FindInstanceOf
returns a -1. This is illustrated in the following code:

var
 idx: Integer;
begin
 idx := -1;
 repeat
 idx := ObjList.FindInstanceOf(TMyObject,
 True, idx+1);
 if idx >= 0 then
 ...
 until(idx < 0);
end;

On Language
The TComponentList Class
The second class definition in the Contnrs unit is TComponentList
(see Figure 5). Notice that TComponentList descends from
TObjectList, giving it all the capabilities of that class. Also notice
that Add, Remove, IndexOf, Insert, and Items have all been
changed to use a TComponent type. TComponentList has one addi-
tional feature that is not obvious from looking at the public
14 December 2000 Delphi Informant Magazine

Name Type Description

Add(Item: Pointer): function Used to add a new item to the e
Integer;
Clear; procedure Used to clear out the list and re
 to zero.
Delete(Index: Integer); procedure Used to remove a specific item
IndexOf(Item: function Used to find the list index of a s
Pointer): Integer;
Insert(Index: Integer; procedure Used to insert an item into the l
Item: Pointer); specific index.
Remove(Item: function Used to remove a specific item
Pointer): Integer; without needing to know the ite

Figure 2: Commonly used public methods of the TList class.

Figure 3: Some of the less common properties and methods of the T

Name Type Description

Capacity: Integer; property Allows precise control over mem
 for list.
Extract(Item: function Extract is identical to Remove ex
Pointer): Pointer; returns a reference to the item;
 different behavior.
Exchange(Index1, procedure Used to swap two items in the li
Index2: Integer);
First: Pointer; function Returns the first item in the list.
Last: Pointer; function Returns the last item in the list.
Move(CurIndex procedure Used to reposition item from ind
NewIndex: Integer);
Pack; procedure Removes all nil pointer elements
Sort(Compare: procedure Used to sort items in a list. Pass
TListSortCompare); routine is used to determine item

TObjectList = class(TList)
 ...
public
 constructor Create; overload;
 constructor Create(AOwnsObjects: Boolean); overload;
 function Add(AObject: TObject): Integer;
 function Remove(AObject: TObject): Integer;
 function IndexOf(AObject: TObject): Integer;
 function FindInstanceOf(AClass: TClass;
 AExact: Boolean = True; AStartAt: Integer = 0):
 Integer;
 procedure Insert(Index: Integer; AObject: TObject);
 property OwnsObjects: Boolean;
 property Items[Index: Integer]: TObject; default;
end;

Figure 4: Class declaration for TObjectList.

TComponentList = class(TObjectList)
 ...
public
 function Add(AComponent: TComponent): Integer;
 function Remove(AComponent: TComponent): Integer;
 function IndexOf(AComponent: TComponent): Integer;
 procedure Insert(Index: Integer; AComponent: TComponent);
 property Items[Index: Integer]: TComponent; default;
end;

Figure 5: Class declaration for TComponentList.
class definition. If a component in the list is freed (perhaps
by its owning form), then it will automatically be removed
from the TComponentList list. This is accomplished by using the
TComponent.FreeNotification method, which causes components
in the list to notify the TComponentList object that they are about
to be destroyed.
because the pro

nd of the list.

set the Count

by index.
pecific item.

ist at a

from the list,
m’s index.

List class.

ory allocation

cept it
may take on

st.

exes.

 from the list.
ed Compare

 order.

TOrderedList =
private
 FList: TList
protected
 procedure Pu
 ...
public
 function Cou
 function AtL
 procedure Pu
 function Pop
 function Pee
end;

TStack = class
protected
 procedure Pu
end;

TQueue = class
protected
 procedure Pu
end;

Figure 6: TOrd
The TClassList Class
The third class definition in Contnrs is TClassList,
shown in Listing One (beginning on page 15).
Unlike the previous two classes, this descendant of
TList doesn’t add functionality. It simply changes
Add, Remove, IndexOf, Insert, and Items to use type
TClass. While this list would prove useful in
certain programming situations, it’s perhaps just
as useful as an example of how to create your
own custom TList descendant class. I’m including
the entire class definition here to illustrate how
the supporting methods simply call the inherited
implementation of the same method.

To create a TMyObjectList class, which descended
from either TList or TObjectList, you would
simply change all the references of TClass to
TMyObject, as shown in Listing Two (on page
16). Of course, once you have the basic frame-
work of a TMyObjectList class in place, adding
methods or properties that use specific function-
ality of TMyObject would be a natural extension
of the class, as demonstrated by the DoSomething
procedure shown in Listing Two.

TOrderedList, TStack, and TQueue Classes
Now we’ll look at three class definitions in the
Contnrs unit at the same time, TOrderedList,
TStack, and TQueue, as shown in Figure 6.
Notice that although TOrderedList does not
descend from TList, it uses a TList object inter-
nally to store a list of items. Also notice that

tected PushItem procedure is declared as abstract,

the TOrderedList class is an abstract class.
 class(TObject)

;

shItem(AItem: Pointer); virtual; abstract;

nt: Integer;
east(ACount: Integer): Boolean;
sh(AItem: Pointer);
: Pointer;
k: Pointer;

(TOrderedList)

shItem(AItem: Pointer); override;

(TOrderedList)

shItem(AItem: Pointer); override;

eredList, TStack, and TQueue.

On Language
Although Delphi prohibits creating an instance of an abstract class,
TStack and TQueue are two descendant classes you can create
instances of. These two classes differ only in their implementation
of the protected PushItem procedure. As their class names suggest,
TStack stores items in a last-in-first-out manner (or LIFO), and
TQueue stores items in a first-in-first-out manner (or FIFO). Here’s a
brief look at the individual methods of both classes:
§ Count returns the number of items in the list.
§ AtLeast can be used to check the size of the list; it returns True

if the number of items in the list is greater than or equal to the
passed value.

§ For TStack, Push adds an item to the end of the list. For TQueue,
Push inserts an item at the beginning of the list.

§ Pop returns an item from the end of the list, and removes it
from the list.

§ Peek returns an item from the end of the list, but leaves it in
the list.

TObjectStack and TObjectQueue Classes
Now we’ll look at the last two class definitions in the Contnrs
unit, TObjectStack and TObjectQueue, shown in Listing Three (on
page 16). These two classes are simple extensions of the TStack
and TQueue classes, containing a list of TObjects instead of point-
ers. Unlike the TObjectList class presented earlier, these classes do
not offer any new functionality. In most situations it wouldn’t
make any sense for these lists to own their objects, because pop-
ping an object off the list would result in its destruction. These
classes use the same techniques as shown in the TClassList defini-
tion, calling inherited methods while converting between objects
and pointers. A close examination of these two classes demon-
strates how easy it would be to create a
TMyObjectStack or TMyObjectQueue class, as shown in Listing
Four (beginning on page 16).

The TIntList Class
Up to this point, all the list classes we have looked at have
been based on a list of pointers. The Object and Component
lists are really lists of pointers, which just happen to point to
TObjects or TComponents. We’ve even discussed how to create
custom TMyObject classes, which would essentially be a list of
pointers that just happen to point to TMyObjects.

Now we’re going to define our own TList class that, instead of
containing a list of pointers, contains a list of integers. We’ll do
this by creating a new IntList unit, which defines the TIntList class,
shown in Listing Five (on page 17). This class makes use of the fact
that pointers and integers both take the same amount of storage
space — four bytes. By typecasting pointers as integers, we can
store an integer value in the space reserved for a pointer. All the
supporting methods for this class simply call the inherited method
or property, and include one or more typecast conversions between
pointers and integers. (The IntList unit is available for download;
see end of article for details.)

When looking at the TIntList class, notice that, in addition to the
Add, Remove, IndexOf, Insert, and Items redefinitions, we also redefine
First, Last, and Extract. The reason for this is that in TObjectList,
TComponentList, and TClassList, these methods would still function,
because these classes are still dealing with pointers. In TIntList, these
methods would no longer function unless they were redefined as
using integers. Also notice the Sort method, which makes use of the
TList sorting capabilities by passing the IntListCompare function to
the inherited Sort method.
15 December 2000 Delphi Informant Magazine
Conclusion
Delphi 5 has provided us with several new classes that extend the
capabilities of the TList class. The TObjectList and TComponentList
classes allow us to store lists of objects or components without
having to write additional supporting code. The TStack and TQueue
classes provide a more structured approach to using lists. While
TClassList, TObjectStack, and TObjectQueue are only simple exten-
sions of these classes, we’ve examined how to use these examples to
create custom list classes based on our own TMyObject class. We’ve
even defined a new TIntList class that extends the capabilities of the
TList class to contain a list of integers. While the main intent of this
article has been to showcase the new classes provided in the Contnrs
unit, I also hope that I have instilled a better understanding of how
you can create custom list classes. ∆

The files referenced in this article are available on the Delphi Informant
Magazine Complete Works CD in INFORM\00\DEC\DI200012JM.

Jeremy Merrill is an EDS contractor in a partnership contract with the Veteran’s
Health Administration. He is a member of the VA’s Computerized Patient Record
System development team, located in the Salt Lake City Chief Information Officer’s
Field Office.
Begin Listing One — TClassList
TClassList = class(TList)
protected
 function GetItems(Index: Integer): TClass;
 procedure SetItems(Index: Integer; AClass: TClass);
public
 function Add(aClass: TClass): Integer;
 function Remove(aClass: TClass): Integer;
 function IndexOf(aClass: TClass): Integer;
 procedure Insert(Index: Integer; aClass: TClass);
 property Items[Index: Integer]: TClass
 read GetItems write SetItems; default;
end;
...
{ TClassList }
function TClassList.Add(AClass: TClass): Integer;
begin
 Result := inherited Add(AClass);
end;

function TClassList.GetItems(Index: Integer): TClass;
begin
 Result := TClass(inherited Items[Index]);
end;

function TClassList.IndexOf(AClass: TClass): Integer;
begin
 Result := inherited IndexOf(AClass);
end;

procedure TClassList.Insert(Index: Integer;
 AClass: TClass);
begin
 inherited Insert(Index, AClass);
end;

function TClassList.Remove(AClass: TClass): Integer;

On Language
begin
 Result := inherited Remove(AClass);
end;

procedure TClassList.SetItems(Index: Integer;
 AClass: TClass);
begin
 inherited Items[Index] := AClass;
end;

End Listing One
Begin Listing Two — TMyObjectList
TMyObject = class(TObject)
public
 procedure DoSomething;
end;

TMyObjectList = class(TObjectList)
protected
 function GetItems(Index: Integer): TMyObject;
 procedure SetItems(Index: Integer; AMyObject: TMyObject);
public
 function Add(aMyObject: TMyObject): Integer;
 procedure DoSomething;
 function Remove(aMyObject: TMyObject): Integer;
 function IndexOf(aMyObject: TMyObject): Integer;
 procedure Insert(Index: Integer; aMyObject: TMyObject);
 property Items[Index: Integer]: TMyObject
 read GetItems write SetItems; default;
end;
...
{ TMyObjectList }
function TMyObjectList.Add(AMyObject: TMyObject): Integer;
begin
 Result := inherited Add(AMyObject);
end;

procedure TMyObjectList.DoSomething;
var
 i: Integer;
begin
 for i := 0 to Count-1 do
 Items[i].DoSomething;
end;

function TMyObjectList.GetItems(Index: Integer): TMyObject;
begin
 Result := TMyObject(inherited Items[Index]);
end;

function TMyObjectList.IndexOf(AMyObject: TMyObject):
 Integer;
begin
 Result := inherited IndexOf(AMyObject);
end;

procedure TMyObjectList.Insert(Index: Integer;
 AMyObject: TMyObject);
begin
 inherited Insert(Index, AMyObject);
end;

function TMyObjectList.Remove(AMyObject: TMyObject):
 Integer;
begin
 Result := inherited Remove(AMyObject);
end;

procedure TMyObjectList.SetItems(Index: Integer;
 AMyObject: TMyObject);
begin
16 December 2000 Delphi Informant Magazine
 inherited Items[Index] := AMyObject;
end;

End Listing Two
Begin Listing Three — TObjectStack and TObjectQueue
TObjectStack = class(TStack)
public
 procedure Push(AObject: TObject);
 function Pop: TObject;
 function Peek: TObject;
end;

TObjectQueue = class(TQueue)
public
 procedure Push(AObject: TObject);
 function Pop: TObject;
 function Peek: TObject;
end;
...
{ TObjectStack }
function TObjectStack.Peek: TObject;
begin
 Result := TObject(inherited Peek);
end;

function TObjectStack.Pop: TObject;
begin
 Result := TObject(inherited Pop);
end;

procedure TObjectStack.Push(AObject: TObject);
begin
 inherited Push(AObject);
end;

{ TObjectQueue }
function TObjectQueue.Peek: TObject;
begin
 Result := TObject(inherited Peek);
end;

function TObjectQueue.Pop: TObject;
begin
 Result := TObject(inherited Pop);
end;

procedure TObjectQueue.Push(AObject: TObject);
begin
 inherited Push(AObject);
end;

End Listing Three
Begin Listing Four — TMyObjectStack and
TMyObjectQueue
TMyObjectStack = class(TStack)
public
 procedure Push(AMyObject: TMyObject);
 function Pop: TMyObject;
 function Peek: TMyObject;
end;

TMyObjectQueue = class(TQueue)
public
 procedure Push(AMyObject: TMyObject);
 function Pop: TMyObject;
 function Peek: TMyObject;
end;
...

On Language
{ TMyObjectStack }
function TMyObjectStack.Peek: TMyObject;
begin
 Result := TMyObject(inherited Peek);
end;

function TMyObjectStack.Pop: TMyObject;
begin
 Result := TMyObject(inherited Pop);
end;

procedure TMyObjectStack.Push(AMyObject: TMyObject);
begin
 inherited Push(AMyObject);
end;

{ TMyObjectQueue }
function TMyObjectQueue.Peek: TMyObject;
begin
 Result := TMyObject(inherited Peek);
end;

function TMyObjectQueue.Pop: TMyObject;
begin
 Result := TMyObject(inherited Pop);
end;

procedure TMyObjectQueue.Push(AMyObject: TMyObject);
begin
 inherited Push(AMyObject);
end;

End Listing Four
Begin Listing Five — IntList.pas
unit IntList;

interface

uses
 Classes;

type
 TIntList = class(TList)
 protected
 function GetItem(Index: Integer): Integer;
 procedure SetItem(Index: Integer;
 const Value: Integer);
 public
 function Add(Item: Integer): Integer;
 function Extract(Item: Integer): Integer;
 function First: Integer;
 function IndexOf(Item: Integer): Integer;
 procedure Insert(Index, Item: Integer);
 function Last: Integer;
 function Remove(Item: Integer): Integer;
 procedure Sort;
 property Items[Index: Integer]: Integer
 read GetItem write SetItem; default;
 end;

implementation

{ TIntList }
function TIntList.Add(Item: Integer): Integer;
begin
 Result := inherited Add(Pointer(Item));
end;

function TIntList.Extract(Item: Integer): Integer;
begin
 Result := Integer(inherited Extract(Pointer(Item)));
17 December 2000 Delphi Informant Magazine
end;

function TIntList.First: Integer;
begin
 Result := Integer(inherited First);
end;

function TIntList.GetItem(Index: Integer): Integer;
begin
 Result := Integer(inherited Items[Index]);
end;

function TIntList.IndexOf(Item: Integer): Integer;
begin
 Result := inherited IndexOf(Pointer(Item));
end;

procedure TIntList.Insert(Index, Item: Integer);
begin
 inherited Insert(Index, Pointer(Item));
end;

function TIntList.Last: Integer;
begin
 Result := Integer(inherited Last);
end;

function TIntList.Remove(Item: Integer): Integer;
begin
 Result := inherited Remove(Pointer(Item));
end;

procedure TIntList.SetItem(Index: Integer;
 const Value: Integer);
begin
 inherited Items[Index] := Pointer(Value);
end;

function IntListCompare(Item1, Item2: Pointer): Integer;
begin
 if Integer(Item1) < Integer(Item2) then
 Result := -1
 else if Integer(Item1) > Integer(Item2) then
 Result := 1
 else
 Result := 0;
end;

procedure TIntList.Sort;
begin
 inherited Sort(IntListCompare);
end;

end.

End Listing Five

18 December 2000 Delphi Informant Magazin

Greater Delphi
ChartSpace and Spreadsheet ActiveX Components / Automation / Delphi 5

By Alex Fedorov
Two Office Web Components
Working with the OWC Chart and Spreadsheet Controls

One of the new and exciting features of Microsoft Office 2000 is its Office Web
Components (OWC), a set of ActiveX components intended for use from HTML

pages to create “active” Web documents. Since these components are simply ActiveX
components, however, we can also use them in non-Web applications built with Delphi.
This article shows you how.
The six ActiveX components that comprise the
OWC implement some of the functionality
of Microsoft Excel, and provide database
access. The components are named ChartSpace,
Spreadsheet, DataSourceControl, RecordNaviga-
tionControl, ExpandControl, and PivotTable.
DataSourceControl and RecordNavigationCon-
trol can be replaced with ADOExpress VCL
components (as we’ll see in this article), so
they’re of no particular interest to Delphi devel-
opers. ExpandControl is also outside the scope
of this article.

This leaves ChartSpace, Spreadsheet, and Pivot-
Table. Unfortunately, I haven’t found a direct
way to make the PivotTable component work
in Delphi 5; it cannot be activated correctly for
some reason. We can use still the component in
Delphi, however, and in a future issue of this
magazine we’ll see the PivotTable component at
work, and discuss accessing the Microsoft Excel
Pivot Table services.

As with many programming services available
through a type library — ActiveX components,
Automation servers, etc. — we need to create a
wrapper unit to use them. (This step is unneces-
sary if you’re using late binding. In that case,
you can use Windows COM API functions to
create objects and variants to use the methods
and properties implemented in them. However,
the easier way to deal with ActiveX components is
to create a wrapper unit.) To do so, select Project

| Import Type Library from the Delphi menu, and
e

select Microsoft Office Web Components 9.0 (Version

1.0) from the list of available type libraries.

Since we’re dealing with ActiveX components,
we need to check the Generate Component Wrap-

per option, select the Palette page where Delphi
will put the components wrappers (the default is
ActiveX), and click Install. The six components
will be added to the Component palette. As
already mentioned, we’ll discuss only the Chart-
Space and Spreadsheet components.

The type library file for the OWC is named
MSOWC.DLL, and lives by default in \Program
Files\Microsoft Office 2000\Office. The help file
for the OWC is named MSOWCVBA.CHM,
and lives in \Program Files\Microsoft Office
2000\Office\1033 by default.

The ChartSpace Component
As its name denotes, ChartSpace is used to
create charts. ChartSpace supports 46 types of
charts, from Line to Doughnut Exploded. See
the ChartChartTypeEnum constants in OWC
help for the complete list. It can also draw charts
from other members of the OWC (the Spread-
sheet component in our case), from ADO data
sources, or from static data. In this article, we’ll
demonstrate how to do all three. (The demon-
stration projects are available for download; see
end of article for details.)

Charts Based on Static Data
Static data is supplied by the application, i.e. it’s

19 December 2000 Delphi Informant Magazine

var

Figure 1: Simplified ChartSpace
object model.

Border

ChartSpace

Interior

WCCharts

WCDataSources

WCLegend

WCTitle

Greater Delphi

Series := Chart.SeriesCollection
with Series do begin
 // Set Series caption...
 Caption := '1998';
 // ...and data.
 SetData(chDimCategories, chDat
 // Y-axes data will be taken f
 SetData(chDimValues, chDataLit
 [104737, 50952, 78128, 11779
 52902, 80160, 47491, 62435
 // Set Chart type, Clustered C
 Type_ := chChartTypeColumnClus
end;

Figure 2: Building a chart.
hard wired. In Delphi appli-
cations, we store such data
in static variant arrays cre-
ated with the VarArrayCreate
function, or in dynamic
variant arrays created with
the VarArrayOf function.

Variant arrays. Let’s take
a brief refresher course on
the use of variant arrays.
Static variant arrays hold
items of type Variant. Such
arrays are created with the
VarArrayCreate function,
and are filled on an item-
by-item basis, or in a
loop. The following exam-
ple shows how to create and
fill a static variant array:

 XValues : Variant;
 ...
 // Create the variant array.
 XValues := VarArrayCreate([0,2], varVariant);
 // Load with data for the X-axis.
 XValues[0] := 'Element one';
 XValues[1] := 'Element two';
 XValues[2] := 'Element three';

When we call the VarArrayCreate function, we indicate the dimen-
sions of the variant array and the type of its items, varVariant in
this case. In the example above, we’ve created a variant array with
three items of type Variant.

A dynamic variant array is created with the VarArrayOf function,
and isn’t associated with a particular variable. In the following
example, the VarArrayOf function returns a one-dimensional array
of items of type Variant:

VarArrayOf([104737, 50952, 78128, 117797,
 52902, 80160, 47491, 62435]));

Now, let’s return to the ChartSpace component.

To use the ChartSpace component we must perform several steps.
First, we have to clear the contents of the chart. Next, we need to
add a new Chart object to the Charts collection, which can hold up
to 16 charts. After that we can supply data for series (in the Series
collection), set the title (the Title property), specify the axes (in the
.Add(0);

aLiteral, XValues);
rom dynamic variant array.
eral, VarArrayOf(
7,
]));
olumn in this case.
tered;
Axes collection), and legend (the Legend property). Figure 1 shows a
simplified object hierarchy of the ChartSpace component (see OWC
Help for the complete diagram).

Instead of giving you a detailed description of the ChartSpace com-
ponent, and its objects and collections, let’s just look at an example
that uses static data to create a chart. First, we need some variables:

var
 Chart : WCChart; // Chart
 Series : WCSeries; // Series
 XValues : Variant; // X-axis values

Now to manipulate the component. As indicated above, we need to
clear the contents of the chart before we can use it:

ChartSpace1.Clear;
ChartSpace1.Refresh;

Let’s create a new chart. To do this we need to add an item to
the Charts collection. Since this is the first chart, it has an index
value of 0.

Chart := ChartSpace1.Charts.Add(0);

Now, let’s add the title for the chart. First, we need to indicate that
our chart will have a title, then supply the text for the title.

Chart.HasTitle := True;

Chart.Title.Caption := 'Sales By Category';

After that, we need to supply data. But first, because we’re using the
static data in this example, let’s create it. For the X-axis, we will use
a static variant array:

XValues := VarArrayCreate([0,7], varVariant);
XValues[0] := 'Beverages';
XValues[1] := 'Condiments';
XValues[2] := 'Confections';
XValues[3] := 'Dairy Products';
XValues[4] := 'Grains & Cereals';
XValues[5] := 'Meat & Poultry';
XValues[6] := 'Produce';
XValues[7] := 'Seafood';

Now we can use this data to build our chart. The first step is to add the
new Series object to the SeriesCollection of our Chart (see Figure 2).

To illustrate, let’s add another series, and put the new chart on top of
the existing one, as shown in Figure 3.
Series := Chart.SeriesCollection.Add(1);
with Series do begin
 // Set Series caption...
 Caption := '1999';
 // ...and data.
 SetData(chDimCategories, chDataLiteral, XValues);
 // Y-axes data is taken from the dynamic variant array.
 SetData(chDimValues, chDataLiteral, VarArrayOf(
 [20000, 15000, 36000, 56000,
 40000, 18000, 20000, 33000]));
 // Set the Chart type, e.g. Line Markers.
 Type_ := chChartTypeLineMarkers;
end;

Figure 3: Adding another chart to SeriesCollection.

Greater Delphi
To complete our first charting example, we just need to add
an axis:

Chart.Axes.Add(Chart.Axes[chAxisPositionLeft].Scaling,

 chAxisPositionRight, chValueAxis);

and set some of its properties:

Chart.Axes[chAxisPositionLeft].NumberFormat := '$#,##0';
Chart.Axes[chAxisPositionRight].NumberFormat := '0';
Chart.Axes[chAxisPositionLeft].MajorUnit := 20000;
Chart.Axes[chAxisPositionRight].MajorUnit := 20000;

Then we add a legend at the bottom part of our chart:

Chart.HasLegend := True;
Chart.Legend.Position := chLegendPositionBottom;

The resulting chart is shown in Figure 4. So, we’ve seen how to use
static data to draw charts with the ChartSpace component. In the
next example, we will use data stored in a database.

Charts Based on Data from a Database
When we need to build a chart based on data stored in a database,
we have two options. We can use DataSource from the OWC, or
we can use some ADO-compatible data source. As we will see later
in this article, the main sequence of actions is the same; the only
difference is how the data sources are defined.
20 December 2000 Delphi Informant Magazine

Figure 4: This line chart was created with static (hard wired) data.

// Set the horizontal layout for the chart.
ChartSpace1.ChartLayout := chChartLayoutHorizontal;
// Add new Chart.
BarChart := ChartSpace1.Charts.Add(0);
with BarChart do begin
 // Set the type of Chart, a bar chart.
 Type_ := chChartTypeBarClustered;
 // The f irst f ield is categories.
 SetData(chDimCategories, 0, 0);
 // The second f ield is values.
 SetData(chDimValues, 0, 1);
 // Format the axes.
 with Axes[chAxisPositionBottom] do begin
 NumberFormat := '0,';
 MajorUnit := 25000;
 HasMajorGridlines := False;
 end;
end;

Figure 5: Creating a bar chart.
Using DataSource from the OWC
Let’s start with the OWC DataSource component. First, we’ll declare
some variables:

var
 RSD : RecordsetDef; // Datasource
 BarChart : WCChart; // Chart
 PieChart : WCChart; // Chart

Next, we’ll define the data source and the SQL statement
used to extract the data. For this example, we’re using the
sample Northwind database that comes with Microsoft Access
(Northwind.mdb). Specifically, we’re selecting data from the Cat-
egory Sales for 1997 view:

begin
 DataSourceControl1.ConnectionString :=
 'DRIVER={Microsoft Access Driver (*.mdb)};' +
 'DBQ=C:\DATA\NORTHWIND.MDB';
 RSD := DataSourceControl1.RecordsetDefs.AddNew(
 'SELECT * FROM [Category Sales for 1997]', 3, 'Sales');

Then, we clear the chart, and indicate the source of data:

with ChartSpace1 do begin
 Clear;
 Refresh;
 DataSource := DataSourceControl1.DefaultInterface as
 MSDATASRC_TLB.DataSource;
 DataMember := RSD.Name;
end;

Because the DataSource property of the ChartSpace component
is declared as an IUnknown-based interface (see the
MSDATASRC_TLB unit), we need to use the construction shown
here. (In Visual Basic, the statement is simpler — we just assign the
DataSourceControl1 value to the DataSource property. In this case, the
default interface will be found automatically.)

Using an ADO Data Source
Now, let’s see how we can use an ADO-compatible data source. To
do this, we’ll use Delphi’s ADOExpress components, i.e. components
on the ADO page of the Component palette. The ADOConnection
component is used to set the data source and cursor type, and the
ADOCommand component is used to extract data with a SQL
query. First, we declare a variable for the ADO recordset:

var
 RS : _Recordset; // ADO RecordSet

Then, the following code executes the SQL query, and associates the
returned data with the Chart:

RS := ADOCommand1.Execute;
with ChartSpace1 do begin
 Clear;
 Refresh;
 DataSource := RS as MSDATASRC_TLB.DataSource;
 DataMember := '';
end;

Creating the Chart
After the source of the data is specified — with the OWC Data-
Source, or through an ADO recordset — we can create our chart. To
do so, we must add a new chart to the Charts collection, specify the

Greater Delphi
kind of data we will use, and add the axes. The code that does the
job is shown in Figure 5.

Now, let’s add another chart — a pie chart — based on the same data,
as shown in Figure 6. The resulting chart is shown in Figure 7.

Charts Based on Spreadsheet Data
In our third example, we’ll create a chart based on data stored in
an OWC Spreadsheet component. When these two OWC ActiveX
controls are used together like this, the chart will change its appear-
ance whenever the data in the spreadsheet is changed.

First, we need some variables:

var
 Sheet : WorkSheet; // Spreadsheet
 Chart : WCChart; // Chart

Now we can fill the spreadsheet with some data:

Sheet := Spreadsheet1.ActiveSheet;
with Sheet do begin
 Range['A1', 'A10'].Set_Formula('=Row()');
 Range['B1', 'B10'].Set_Formula('=A1^2');
 Range['A12','A12'].Set_Formula('=Max(A1:A10)');
 Range['B12','B12'].Set_Formula('=Max(B1:B10)');
end;

In the code above, we have inserted row numbers (from 1 to 10) in the
column A and its squared values in the appropriate column B. The cells
A12 and B12 contain the maximum values of the columns A and B.

As you can see, the Spreadsheet component allows us to use formulas,
which many users will recognize from using Microsoft Excel. You
can treat the Spreadsheet component like “Excel Lite;” they share the
same binary kernel. Knowing this allows us to use the Spreadsheet
component to perform some background calculations, without show-
ing the component itself on the screen.
21 December 2000 Delphi Informant Magazine

// Add new chart.
PieChart := ChartSpace1.Charts.Add(1);
with PieChart do begin
 // Set the type of chart, a pie chart.
 Type_ := chChartTypePie;
 // The f irst f ield is categories.
 SetData(chDimCategories, 0, 0);
 // The second f ield is values.
 SetData(chDimValues, 0, 1);
 // "Explode" segments of the pie.
 SeriesCollection.Item[0].Explosion := 20;
 // Add the legend...
 HasLegend := True;
 Legend.Position := chLegendPositionBottom;
 // ...and title.
 HasTitle := True;
 Title.Caption := 'Sales by Category for 1997';
 Title.Font.Set_Bold(True);
 Title.Font.Set_Size(11);
 WidthRatio := 75;
 // Data will be shown as percents.
 with SeriesCollection.Item[0].DataLabelsCollection.Add do
 begin
 HasValue := False;
 HasPercentage := True;
 Font.Set_Size(7);
 end
...

Figure 6: Adding a pie chart to the collection.
After we’ve inserted data into the cells, we can use it to draw a chart.
First, let’s clear the current chart and add a new Chart, then associate
it with data — this time with data stored in a Spreadsheet component
(see Figure 8).

Note that as in the previous examples in this article, we use the
MSDATASRC_TLB.DataSource type to specify the default interface
for the Spreadsheet component. Now we can “beautify” our chart, by
specifying titles for the axes and its types, as shown in Figure 9.

After that, we can specify the maximum and minimum values for
axes, and set additional styles:

Scalings[chDimXValues].Maximum :=
 Sheet.Range['A12', 'A12'].Value;
Scalings[chDimXValues].Minimum := 1;
Scalings[chDimYValues].Maximum :=
 Sheet.Range['B12', 'B12'].Value;
// Set additional styles.
with SeriesCollection.Item[0] do begin
 Marker.Style := chMarkerStyleDot;
 Marker.Size := 6;
 Line.Set_Weight(1);
end

The resulting chart is shown in Figure 10.

Again, this chart is “live;” if we change data in the Spreadsheet compo-
nent, it will be automatically reflected in the ChartSpace component.

Now that we’ve seen how to use a Spreadsheet component as a source
of data for OWC charts, in the remaining part of this article, let’s see
how to use the Spreadsheet component by itself.
Figure 7: The two charts created in Figures 5 and 6.

with ChartSpace1 do begin
 Clear;
 Refresh;
 // Specify the datasource.
 DataSource := Sheet.Parent as MSDATASRC_TLB.DataSource;
 // Add new Chart.
 Chart := Charts.Add(0);
 // Set the type of Chart, Scattered Smooth Line Markers.
 Chart.Type_ := chChartTypeScatterSmoothLineMarkers;
 // Specify data for X...
 Chart.SetData(chDimXValues, 0, 'A1:A10');
 // ...and Y values as a range of cells.
 Chart.SetData(chDimYValues, 0, 'B1:B10');
end;

Figure 8: Using a Spreadsheet component as the data source.

22 December 2000 Delphi Informant Magazin

and such objects as Pane (the work a

Greater Delphi

Figure 11: Simplified object
model for the Spreadsheet
component.

Pane

Spreadsheet

Range

TitleBar

Worksheet

Figure 10: A Spreadsheet component, and a chart using its data.

// Shows titles for the axes.
with Chart do begin
 with Axes[chAxisPositionBottom] do begin
 HasTitle := True;
 Title.Caption := 'X';
 Title.Font.Set_Size(8);
 MajorUnit := 1;
 end;
 with Axes[chAxisPositionLeft] do begin
 HasTitle := True;
 Title.Caption := 'X Squared';
 Title.Font.Set_Size(8);
 MajorUnit := 10;
 end;
...

Figure 9: Specifying titles for the chart’s axes.
The Spreadsheet
Component
The Spreadsheet component
provides us with a programma-
ble kernel, which can be used
to perform various calculations
with a huge library of func-
tions. It also comes with an
easy-to-use graphical interface
for manipulating the cells of
the spreadsheet.

The object model of the
Spreadsheet component (see
Figure 11) contains the
ActiveSheet property, which
gives us access to an individual
sheet within the component;

rea of the spreadsheet), Range

(for a range of cells), TitleBar (the title bar for the spreadsheet), and
Worksheet (for the spreadsheet itself). Again, see OWC Help for the
complete diagram.

There are many ways to insert data into the Spreadsheet compo-
nent. For example, we can enter it manually, use copy and paste
(the Clipboard), load data from Microsoft Excel or Word, load
data stored in text file or Web site, etc.

To load data from a text file, we can use the Spreadsheet’s LoadText
method, which takes the following arguments:
e

§ the name and path of the file as a string;
§ the symbol to use as the delimiter, e.g. tab, comma, etc.;
§ a Boolean value that indicates how to treat consecutive

delimiters; and
§ the text qualifier, which is a double quote by default.

This LoadText statement, for example, will load data from a file named
Employee.txt, using the tab character (ASCII 9) as the delimiter:

SpreadSheet1.LoadText(
 'c:\data\Employee.txt', Chr(9), False, '"');

After calling this method, our spreadsheet will be filled with the
data contained in the specified text file. Alternatively, we can specify
data through the CSVData property (for comma-separated data), or
through the HTMLData property (for HTML-based data). Note that
HTML-based data is stored in Microsoft Excel-compatible format.
This should be kept in mind if you need to exchange data between
the Spreadsheet component and Excel.

In its current version, the Spreadsheet component doesn’t feature
database support per se. However, it’s easy to load data from an
ADO-compatible data source, as shown in Figure 12.

In this example, we’ve used Delphi’s ADOCommand component to
extract data from the Employees table in the Northwind database.
After that, we iterated through the records, and extracted data into
the cells of the Spreadsheet component.

After specifying the data, we can set properties for the cells. This
example changes the font of the first row:

with Spreadsheet1.Range[Spreadsheet1.Cells.Item[1, 1],
 Spreadsheet1.Cells.Item[1, RS.Fields.Count]].Font do
 begin
 Set_Name('Arial Narrow');
 Set_Bold(True);
 Set_Size(11);
 end;

Here, we specify that the cells automatically adjust their size to their
contents, and to left-align the contents of the cells:

with Spreadsheet1.Range[Spreadsheet1.Cells.Item[1, 1],
 Spreadsheet1.Cells.Item[NumRecs, RS.Fields.Count]] do
 begin
 AutoFitColumns;
 Set_HAlignment(ssHAlignLeft);
 end;

The resulting spreadsheet is shown in Figure 13.

Setting Colors
Before we end our discussion of Microsoft Office Web Compo-
nents, let’s briefly talk about setting colors. If you try to change the
color of an element of a Chart or Spreadsheet component, you’ll
find that the Color property is read-only. This is due to a bug in the
Delphi type-library parser.

To solve this problem, we must use the more round-about Set_Color
method. Another nuisance is that this method takes an argument of
type POleVariant1. A closer inspection of the type-library interface
code shows that this type is defined as a pointer to OLEVariant. The
following code shows how to use the Set_Color method:

Greater Delphi
var
 C : OLEVariant;
...
// We can use predef ined colors...
C := OLEVariant('CornSilk');
// ...or 16-bit RGB values.
C := OLEVariant(RGB($C0, $C0, $C0));
...
Spreadsheet1.ActiveSheet.UsedRange.Interior.Set_Color(@C);

Conclusion
So there you have it. We’ve seen how to use two Microsoft Office
Web Components in Delphi applications, so you can add two more
ActiveX components to your bag of tricks.
23 December 2000 Delphi Informant Magazine

Figure 13: A sample Spreadsheet component.

procedure TForm1.Button1Click(Sender: TObject);
var
 RS : _RecordSet; // ADO Recordset
 I,J : Integer; // Counters
 NumRecs : Integer; // Number Of Records
begin
 // Execute SQL query.
 RS := ADOCommand1.Execute;
 // Move to the f irst record.
 RS.MoveFirst;
 // Clear the spreadsheet.
 Spreadsheet1.ActiveSheet.Cells.Item[1, 1].Select;
 Spreadsheet1.ActiveSheet.UsedRange.Clear;
 // Set the titles for columns.
 J := 0;
 for I := 0 to RS.Fields.Count-1 do begin
 Inc(J);
 Spreadsheet1.ActiveSheet.Cells.Item[1, J].Set_Value(
 RS.Fields[I].Name)
 end;
 // Set the data.
 I := 1;
 while NOT RS.EOF do begin
 for J := 1 to RS.Fields.Count do
 Spreadsheet1.ActiveSheet.Cells.Item[I+1, J].
 Set_Value(VarToStr(RS.Fields[J-1].Value));
 // Move to the next record.
 RS.MoveNext;
 Inc(I)
 end;
 NumRecs := I;
end;

Figure 12: Loading data from an ADO-compatible data source
into a Spreadsheet component.
It’s important to note that these components can only be used
on computers with one of the following products installed: Office
2000 Standard, Office 2000 Premium, Office 2000 Professional,
Office 2000 Small Business, Office 2000 Developer, or Access
2000. According to the Microsoft Licensing Agreement, we can
use these components only on the local computers and Intranet.
For more information refer to http://www.microsoft.com/Office/
evaluation/prodinfo/license.htm. ∆

The files referenced in this article are available on the Delphi Informant
Magazine Complete Works CD in INFORM\00\DEC\DI200012AF.

Alex Fedorov is executive editor for ComputerPress magazine published in Moscow,
Russia. He is co-author of Professional Active Server Pages 2.0 and ASP 2
Programmer’s Reference published by Wrox, as well as Advanced Delphi Develop-
er’s Guide to ADO, published by Wordware Publishing. You can visit his Web site
at http://d5ado.homepage.com.

http://www.microsoft.com/Office/evaluation/prodinfo/license.htm
http://www.microsoft.com/Office/evaluation/prodinfo/license.htm
http://d5ado.homepage.com

24 December 2000 Delphi Informant Magazin

At Your Fingertips
Custom Menus, Text, Lines / Delphi 4, 5

By Bruno Sonnino

procedure TForm
 ACanvas: TCan
var
 dwCheck : Int
 MenuCaption :
begin
 // Get the ch
 dwCheck := Ge
 // Adjust lef
 ARect.Left :=
 MenuCaption :
 // The font n
 ACanvas.Font.
 // Draw the t
 DrawText(ACan
 Leng
end;

Figure 1: This O
text correctly.
Fancy Menus, etc.
Custom Menus, Rotated Text, and Special Lines

Before Delphi 4, it was difficult to customize a menu (add a bitmap, change a font,
ietc.), because owner drawing (i.e. custom drawing) — although implemented by

Windows — was not exposed by the TMainMenu class. Since Delphi 4, however, this
situation has been rectified, and we can have our way with menus.
This article will highlight some techniques
you can use to customize the appearance of
menus in your Delphi applications. We’ll discuss
text placement, menu sizing, font assignment,
and using bitmaps and shapes to enhance a
menu’s appearance.

Just for fun, this article also features techniques
for creating rotated text and custom lines. All
of the techniques discussed in this article are
demonstrated in projects available for download;
see end of article for details.

Custom Fonts and Sizes
To create a custom menu, set the OwnerDraw
e

1.Times2DrawItem(Sender: TObject;
vas; ARect: TRect; Selected: Boolean);

eger;
 string;

eckmark dimensions.
tSystemMetrics(SM_CXMENUCHECK);
t position.
 ARect.Left + LoWord(dwCheck) + 1;
= (Sender as TMenuItem).Caption;
ame is the menu caption.
Name := 'Times New Roman';
ext.
vas.Handle, PChar(MenuCaption),
th(MenuCaption), ARect, 0);

nDrawItem event handler places menu item
property of the menu component — TMainMenu
or TPopupMenu — to True, and provide event
handlers for its OnDrawItem and OnMeasureItem
events. For example, an OnMeasureItem event
handler is declared like this:

procedure TForm1.Option1MeasureItem(
 Sender: TObject; ACanvas: TCanvas;
 var Width, Height: Integer);

Set the Width and Height variables to adjust the
size of the menu item. The OnDrawItem event
handler is where all the hard work is done; it’s
where you draw your menu and make any special
settings. To draw the menu option with Times
New Roman font, for example, you should do
something like this:

procedure TForm1.Times1DrawItem(
 Sender: TObject; ACanvas: TCanvas;
 ARect: TRect; Selected: Boolean);
begin
 ACanvas.Font.Name := 'Times New Roman';
 ACanvas.TextOut(ARect.Left+1, ARect.Top+1,
 (Sender as TMenuItem).Caption);
end;

This code is flawed, however. If it’s run, the
menu caption will be drawn aligned with the
left border of the menu. This isn’t default Win-
dows behavior; usually, there’s a space to put
bitmaps and checkmarks in the menu. There-
fore, you should calculate the space needed for a

At Your Fingertips
checkmark with code like that shown in Figure 1. Figure 2 shows
the resulting menu.

If the text is too large to be drawn in the menu, Windows will cut
it to fit. Therefore, you should set the menu item size so all the text
can be drawn. This is the role of the OnMeasureItem event handler
shown in Figure 3.

Custom Shapes and Bitmaps
It’s also possible to customize menu items by including bitmaps
or other shapes. To add a bitmap, simply assign a bitmap file to
the TMenuItem.Bitmap property — with the Object Inspector at
25 December 2000 Delphi Informant Magazine

Figure 2: A menu drawn with custom fonts.

procedure TForm1.Times2MeasureItem(Sender: TObject;
 ACanvas: TCanvas; var Width, Height: Integer);
begin
 ACanvas.Font.Name := 'Times New Roman';
 ACanvas.Font.Style := [];
 // The width is the space of the menu check
 // plus the width of the item text.
 Width := GetSystemMetrics(SM_CXMENUCHECK) +
 ACanvas.TextWidth((Sender as TMenuItem).Caption) + 2;
 Height := ACanvas.TextHeight(
 (Sender as TMenuItem).Caption) + 2;
end;

Figure 3: This OnMeasureItem event handler insures that an item
fits in its menu.

procedure TForm1.ColorDrawItem(Sender: TObject;
 ACanvas: TCanvas; ARect: TRect; Selected: Boolean);
var
 dwCheck : Integer;
 MenuColor : TColor;
begin
 // Get the checkmark dimensions.
 dwCheck := GetSystemMetrics(SM_CXMENUCHECK);
 ARect.Left := ARect.Left + LoWord(dwCheck);
 // Convert the caption of the menu item to a color.
 MenuColor :=
 StringToColor((Sender as TMenuItem).Caption);
 // Change the canvas brush color.
 ACanvas.Brush.Color := MenuColor;
 // Draws the rectangle. If the item is selected,
 // draw a border.
 if Selected then
 ACanvas.Pen.Style := psSolid
 else
 ACanvas.Pen.Style := psClear;
 ACanvas.Rectangle(ARect.Left, ARect.Top,
 ARect.Right, ARect.Bottom);
end;

Figure 4: Using the OnDrawItem event to draw colored
rectangles on menu items.
design time, or with code at run time. To draw colored rectangles as
the caption of a menu item, you could use the OnDrawItem event
handler shown in Figure 4. Figure 5 shows the result.

There’s just one catch. If you’re using Delphi 5, you must set
the menu’s AutoHotkeys property to maManual. If you leave it as
the default, maAutomatic, Delphi will add an ampersand character
(&) to the caption, which will break this code. Another solution is
to remove the ampersand with the StripHotKey function.
Figure 5: A menu featuring colored rectangles as items.

procedure TForm1.VerticalDrawItem(Sender: TObject;
 ACanvas: TCanvas; ARect: TRect; Selected: Boolean);
var
 lf : TLogFont;
 OldFont : HFont;
 clFore, clBack : LongInt;
 Rectang : TRect;
 dwCheck : LongInt;
 MenuHeight : Integer;
begin
 dwCheck := GetSystemMetrics(SM_CXMENUCHECK);
 // This will be done once, when the item is selected.
 if Selected then begin
 // Create a rotated font.
 FillChar(lf, SizeOf(lf), 0);
 lf.lfHeight := -14;
 lf.lfEscapement := 900;
 lf.lfOrientation := 900;
 lf.lfWeight := Fw_Bold;
 StrPCopy(lf.lfFaceName, 'Arial');
 // Select this font to draw.
 OldFont := SelectObject(ACanvas.Handle,
 CreateFontIndirect(lf));
 // Change foreground and background colors.
 clFore := SetTextColor(ACanvas.Handle, clSilver);
 clBack := SetBkColor(ACanvas.Handle, clBlack);
 // Get the menu height.
 MenuHeight := (ARect.Bottom-ARect.Top) *
 ((Sender as TMenuItem).Parent as TMenuItem).Count;
 Rectang := Rect(-1, 0, dwCheck-1, MenuHeight);
 // Draw the text.
 ExtTextOut(ACanvas.Handle, -1, MenuHeight, Eto_Clipped,
 @Rectang, 'Made in Borland', 15, nil);
 // Returns to the original state.
 DeleteObject(SelectObject(ACanvas.Handle, OldFont));
 SetTextColor(ACanvas.Handle, clFore);
 SetBkColor(ACanvas.Handle, clBack);
 end;
 // Draw the real menu text.
 ARect.Left := ARect.Left + LoWord(dwCheck) + 2;
 DrawText(ACanvas.Handle,
 PChar((Sender as TMenuItem).Caption),
 Length((Sender as TMenuItem).Caption), ARect, 0);
end;

Figure 6: Using OnDrawItem to draw vertical text on a menu.

At Your Fingertips

Figure 7: Menu with vertical text.

function CreateFont(
 nHeight, // Logical height of font.
 nWidth, // Logical average character width.
 nEscapement, // Angle of escapement.
 nOrientation, // Base-line orientation angle.
 fnWeight: Integer; // Font weight.
 fdwItalic, // Italic attribute flag.
 fdwUnderline, // Underline attribute flag.
 fdwStrikeOut, // Strikeout attribute flag.
 fdwCharSet // Character set identifier.
 fdwOutputPrecision, // Output precision.
 fdwClipPrecision, // Clipping precision.
 fdwQuality, // Output quality.
 fdwPitchAndFamily: DWORD; // Pitch and family.
 lpszFace: PChar // Pointer to typeface name string.
): HFONT; stdcall;

Figure 8: The Object Pascal declaration for the CreateFont Win-
dows API function.

tagLOGFONTA = packed record
 lfHeight: Longint;
 lfWidth: Longint;
 lfEscapement: Longint;
 lfOrientation: Longint;
 lfWeight: Longint;
 lfItalic: Byte;
 lfUnderline: Byte;
 lfStrikeOut: Byte;
 lfCharSet: Byte;
 lfOutPrecision: Byte;
 lfClipPrecision: Byte;
 lfQuality: Byte;
 lfPitchAndFamily: Byte;
 lfFaceName: array[0..LF_FACESIZE - 1] of AnsiChar;
end;
TLogFontA = tagLOGFONTA;
TLogFont = TLogFontA;

Figure 9: The TLogFont record.

procedure TForm1.FormPaint(Sender: TObject);
var
 OldFont, NewFont : hFont;
 LogFont : TLogFont;
 i : Integer;
begin
 // Get handle of canvas font.
 OldFont := Canvas.Font.Handle;
 i := 0;
 // Transparent drawing.
 SetBkMode(Canvas.Handle, Transparent);
 // Fill LogFont structure with information
 // from current font.
 GetObject(OldFont, Sizeof(LogFont), @LogFont);
 // Angles range from 0 to 360.
 while i < 3600 do begin
 // Set escapement to new angle.
 LogFont.lfEscapement := i;
 // Create new font.
 NewFont := CreateFontIndirect(LogFont);
 // Select the font to draw.
 SelectObject(Canvas.Handle, NewFont);
 // Draw text at the middle of the form.
 TextOut(Canvas.Handle, ClientWidth div 2,
 ClientHeight div 2, 'Rotated Text', 21);
 // Clean up.
 DeleteObject(SelectObject(Canvas.Handle, OldFont));
 // Increment angle by 20 degrees.
 Inc(i, 200);
 end;
end;

Figure 10: Code to draw text rotated in 20-degree intervals.
Another way to use the OnDrawItem and OnMeasureItem events is to
write text vertically on a menu (as shown in Figure 7). To do this, you
must create a rotated font. This is only possible using the Windows API
function CreateFont or CreateLogFont (see the “Rotated Text” tip later
in this article).

Then you must draw it in the OnDrawItem event handler. This
event is fired every time a menu item is drawn, so if a menu
has 20 items, it will be drawn 20 times. To make it faster, the
vertical text will be drawn only when the menu item is selected
(since there’s is only one menu item selected at a time). Figure
6 shows how this is implemented with code, and Figure 7 shows
the run-time result.
26 December 2000 Delphi Informant Magazine
One tricky detail is knowing where to begin drawing the text. It
should begin at the bottom of the last item on the menu. To get its
position, we get the height of the menu item, using:

ARect.Top - ARect.Bottom

and multiply it by the number of items in the menu:

(((Sender as TMenuItem).Parent as TMenuItem).Count)

Rotated Text
The Windows API allows you to draw text at any angle. To do
this in Delphi, you must use the API function CreateFont or
CreateFontIndirect. CreateFont is declared as shown in Figure 8.

While this function has many parameters, you will usually want to
change only one or two attributes of the text. In such cases, you
should use the CreateFontIndirect function instead. It takes only one
argument — a record of type TLogFont, as shown in Figure 9.

Looking at this record, you’ll notice its members match the
parameters for the CreateFont function. The advantage of using
this function/record combination is that you can fill the record’s
members with a known font using the GetObject API function,
change the members you want, and create the new font.

To draw rotated text, the only member you must change is lfEscapement,
which sets the text angle in tenths of degrees. So, if you want text drawn
at 45 degrees, you must set lfEscapement to 450.

Notice that there are flags to draw italic, underline, and strikeout text,
but there is no flag to draw bold text. This is done with the lfWeight

At Your Fingertips

Figure 11: Text rotated 360 degrees.

procedure TForm1.Info1Click(Sender: TObject);
var
 LogFont : TLogFont;
begin
 // Fill LogFont structure with information
 // from current font.
 GetObject(Canvas.Font.Handle,
 Sizeof(LogFont), @LogFont);
 // Display font information.
 with LogFont do
 ShowMessage(
 'lfHeight: ' + IntToStr(lfHeight) + #13 +
 'lfWidth: ' + IntToStr(lfWidth) + #13 +
 'lfEscapement: ' +
 IntToStr(lfEscapement) + #13 +
 'lfOrientation: ' +
 IntToStr(lfOrientation) + #13 +
 'lfWeight: ' + IntToStr(lfWeight) + #13 +
 'lfItalic: ' + IntToStr(lfItalic) + #13 +
 'lfUnderline: ' +
 IntToStr(lfUnderline) + #13 +
 'lfStrikeOut: ' +
 IntToStr(lfStrikeOut) + #13 +
 'lfCharSet: ' + IntToStr(lfCharSet) + #13 +
 'lfOutPrecision: ' +
 IntToStr(lfOutPrecision) + #13 +
 'lfClipPrecision: ' +
 IntToStr(lfClipPrecision) + #13 +
 'lfQuality: ' + IntToStr(lfQuality) + #13 +
 'lfPitchAndFamily: ' +
 IntToStr(lfPitchAndFamily) + #13 +
 'lfFaceName: ' + string(lfFaceName));
end;

Figure 12: Getting and displaying font attributes.

function LineDDA(
 // x-coordinate of line's starting point.
 nXStart,
 // y-coordinate of line's starting point.
 nYStart,
 // x-coordinate of line's ending point.
 nXEnd,
 // y-coordinate of line's ending point.
 YEnd : Integer;
 // Address of application-def ined callback function.
 lpLineFunc : TFNLineDDAProc;
 lpData : LPARAM // Address of application-def ined data.
): BOOL; stdcall;

Figure 13: Object Pascal declaration for the Windows API func-
tion, LineDDA.

type
 TForm1 = class(TForm)
 ImageList1: TImageList;
 procedure FormPaint(Sender: TObject);
 procedure FormResize(Sender: TObject);
 end;

var
 Form1: TForm1;

procedure CallDDA(x, y: Integer; Form: TForm1); stdcall;

implementation

{ $R *.DFM }

procedure CallDDA(x, y: Integer; Form: TForm1);
begin
 if x mod 13 = 0 then
 Form.ImageList1.Draw(Form.Canvas, x, y, 0);
end;

procedure TForm1.FormPaint(Sender: TObject);
begin
 LineDDA(0, 0, ClientWidth, ClientHeight,
 @CallDDA, Integer(Self));
end;

procedure TForm1.FormResize(Sender: TObject);
begin
 Invalidate;
end;

Figure 14: Code to draw a line of bitmaps.
member, a number between 0 and 1000. 400 is normal text, values
above this draw bold text, and values below it draw light text.

The code in Figure 10 draws text at angles ranging from 0 degrees
to 360 degrees, at 20-degree intervals. It’s the form’s OnPaint event
handler, so the text is redrawn each time the form is painted. Figure
11 shows the result.

The form’s font is set to Arial, a TrueType font. This code works only
with TrueType fonts; other kinds of fonts don’t support text rotation.
To get current font settings and fill the TLogFont structure, you must
use the GetObject API function. The code in Figure 12 shows how to
fill and display the TLogFont settings for the form’s font.

Once you have the settings in a TLogFont structure, the only change
left is to set lfEscapement to the desired angle and create a new font
27 December 2000 Delphi Informant Magazine
with CreateFontIndirect. Before using this new font, it must be selected
with SelectObject. Another way is to assign the handle of this new
font to the handle of the canvas’ font, before drawing the text. After
drawing the text, this work must be reversed; the old font must be
selected, and the new font deleted. If the new font isn’t deleted, there
will be a memory leak, and — if the routine is executed many times
— Windows (especially 95/98) will run out of resources, and crash.

Stylish Lines
When you draw lines, the individual pixels usually don’t matter; you
simply set the line style, and it’s drawn by Windows. Sometimes
however, you need to do something special and draw a line style
not provided by Windows. This can be done using a Windows API
function named LineDDA, defined in Figure 13.

The first four parameters are the starting and ending points of the
line. The fifth parameter is a callback function that will be called
every time a pixel should be drawn. You put your drawing routines
there. The last parameter is a user parameter that will be passed to

At Your Fingertips

Figure 15: Window with a custom line.
the callback function. You can pass any Integer or pointer to the
function, because it is an LParam (in Win32, it is translated to a
Longint). The callback function must take the form shown here:

procedure CallBackDDA(x, y: Integer;
 UserParam: LParam); stdcall;

where x and y are the coordinates of the drawn point, and UserParam
is a parameter that is passed to the function. This function must be
declared as stdcall. The routine in Figure 14 draws a line of bitmaps,
and Figure 15 shows the result.

This routine handles the form’s OnPaint event, calling LineDDA, so
every time the form must be painted, it redraws the line. Another
event that is handled is OnResize, which invalidates the form client
area, so the line must be redrawn when someone changes its size.
The LineDDA callback function, CallDDA, is very simple. At every
13th point it is called, it draws the bitmap stored in the ImageList.
As you may notice, Self is passed as the last parameter to the
callback function, so it can access the instance data.

Conclusion
Since owner drawing was exposed in TMainMenu in Delphi 4, there
have been many ways to augment your menus. Using the techniques
we’ve discussed here, you can easily enhance your Delphi application’s
menus with custom text, bitmaps, and colors. ∆

The files referenced in this article are available on the Delphi Informant
Magazine Complete Works CD in INFORM\00\DEC\DI200012BS.

A Brazilian, Bruno Sonnino has been developing with Delphi since its first
version in 1995. He has written the books 365 Delphi Tips and Developing
Applications in Delphi 5, published in Portuguese. He can be reached at
sonnino@netmogi.com.br.
28 December 2000 Delphi Informant Magazine

29 December 2000 Delphi Informant Magazin

Case Study

By Denis Perrotti
ASSESS
Delphi Helps American Skandia Compete

American Skandia is a relative newcomer in the world of financial services. Nevertheless,
Iin a few years it has risen to become the number-one provider of independently sold,

variable annuities in the nation. It also owns the fastest growing mutual fund complex,
the American Skandia Advisor Funds. We’ve achieved that success despite the fact that we
don’t market directly to the public, or employ a captive sales force.
The lack of a captive sales force is key. We sell
only through independent financial professionals
who can sell anyone’s products. To counter that,
American Skandia offers exceptional products and
provides a range of services that offer extra value to
the brokers who sell those products. ASSESS® is a
cornerstone of that value-added strategy.

The Low-Down on ASSESS
ASSESS is a suite of programs designed to assist
financial professionals with every aspect of the
sales process. The programs can track clients and
their personal data, present information about the
individual portfolios offered for investment in our
products, and help the financial professional com-
plete applications and other paperwork.

There’s even a multimedia program packed with
information about American Skandia and its
products, as well as general information about
investing — including more than 400MB of
videos and presentations. Today, ASSESS is dis-
tributed to more than 10,000 financial profes-
sionals each quarter, and has won wide praise
and recognition, including an award for top
CD-ROM in the industry in 1998.
e

The Issues
Originally, ASSESS consisted of only two programs
(the current total is 14) that supported only one
product line: variable annuities. At that time it
was programmed in Microsoft Visual Basic, which
served us quite well. Then the company began to
expand into other lines of financial products, includ-
ing qualified plans, mutual funds, and variable life
insurance. The challenge was clear: The program-
ming team (which consisted of two people at the
time!) was going to have to support each of those
new product lines on ridiculously short deadlines.

About that same time, we needed to move away from
the standard Windows look to something more rep-
resentative of American Skandia. The design depart-
ment set to work to create that look and was given
total creative control. So they wouldn’t impose limits
on themselves, they were told to assume we could
do anything, do it tomorrow, and do it for no
money. The design they came up with was visually
appealing and decidedly non-standard. This was the
look American Skandia was to build.

Finally, since our installed base was about to
expand tremendously, ASSESS needed to be easily
deployable. We ran into numerous problems with
the Visual Basic deployment, including the usual
trips into DLL hell, with occasional detours into
VBX purgatory. It was an experience we were anx-
ious not to repeat.

Given these conditions, it was easy to see that
Visual Basic couldn’t meet our needs. Because
many of the programs were going to be similar
in nature, design, and structure, the development
tool needed to be fully object-oriented to make the
best use and re-use of code. Because we needed
to create a whole new look from scratch, our new
development tool needed to give us the ability to
quickly and easily create new controls and compo-

nents. Finally, since our new look required extensive palette manipu-

Case Study
lation given the custom color scheme, our new tool needed to be
powerful and provide full access to the Windows API.
30 December 2000 Delphi Informant Magaz

American Skandia is a lead-
ing marketer of variable
annuities and mutual funds.
ASSESS is a proprietary soft-
ware product designed to
assist financial professionals
in the sale of those and other
financial products. It’s built
on a custom architecture that
allows for rapid development
and customization.

Third-party tools: Delphi,
Wise Installation System,
TCompress

American Skandia
One Corporate Drive
Tower One
Shelton, CT, 06484
Phone: 1-800-SKANDIA
Web Site: http://www.
AmericanSkandia.com
Delphi to the Rescue
It didn’t take long to see that Delphi
was the only tool available that
would meet all of our needs. It
was fully object-oriented, with a
well-defined and remarkably flexi-
ble object model. Only Java, which
didn’t exist at the time, exceeds the
Delphi object model in terms of
flexibility and power. Also, Delphi’s
visual environment was — and still
is — second to none. Delphi’s abil-
ity to produce true, stand-alone exe-
cutables was also highly desirable.
Because we don’t control our users’
machines, the fewer dependencies
we have to worry about, the better.
There are none with Delphi.

The ease with which we could
create entirely new visual and non-
visual components sealed the deal
for Delphi. We created more than
two dozen brand-new, customized,
and highly stylized controls for
use in ASSESS with remarkably
ine
little work, and
this was in
1997. Visual
Basic wouldn’t
have the ability
to create con-
trols for some
time, and —
even today —
control creation
in Visual Basic
isn’t in the same
league with
Delphi. We
were also able to in
clude advanced GUI features in our controls and
programs, like pop-up buttons and mouse-overs. Such things may be
common today, but they weren’t three years ago.

The Aftermath
Delphi has served us well for the better part of three years. Despite
ever-changing requirements and our company’s “We need it now”
attitude, we have continued to deliver ASSESS on time and on
budget every quarter, while launching three new product lines, and
the dozen new programs that support them. I can’t imagine another
tool that would have allowed us to do that. ∆

Denis M. Perrotti is Senior Programmer for E-Marketing, American Skandia Market-
ing, Inc., based in Shelton, CT. He can be reached at Dperrotti@Skandia.com.

http://www.AmericanSkandia.com

31 December 2000 Delphi Informant Magazin

New & Used

By Bill Todd
LEADTOOLS Raster Imaging 12
A Toolkit with Intense Imaging Power

If you need a powerful professional imaging toolkit that you can use as the foundation
for any graphics application, look no further than LEADTOOLS Raster Imaging 12 from

LEAD Technologies, Inc. LEADTOOLS includes support for more than 60 graphics file
formats, including JPEG, GIF, TIFF (including G3/G4, LZW, CMYK, and JTIF), PNG, BMP,
MODCA/IOCA, PCX, and TGA.
You can manipulate all or part of an image using
more than 70 digital filters and transforms, includ-
ing smooth; sharpen; edge detect and enhance;
change brightness, contrast, and gamma; change hue
and saturation; add noise; resize and rotate images;
and change color depth. All standard image com-
pression techniques, including JPEG, CMP, LZW,
G3/G4, Huffman, and run-length, are available,
as is LEADTOOLS’ high-performance proprietary
compression algorithm. You can also apply 2,000
display effects to modify the appearance of an image.

The LEADTOOLS Family
The first challenge you’ll face when evaluating LEAD-
TOOLS is deciding which product you need. The
LEADTOOLS family consists of nine products:
§ Raster Imaging
§ Raster Imaging Pro
§ Multimedia
§ Multimedia Pro
§ Vector Imaging Pro
§ Document Imaging
§ Document Imaging Pro
§ Medical Imaging
§ Medical Imaging Pro

For help choosing the right product, go to
the LEAD Technologies Web site at http://
www.leadtools.com, click on Products, then click on
Comparison Chart to see which features are included
in each product. Note that although the Raster
Imaging and Multimedia products don’t require
a royalty on each copy of your software, the
document, medical, and vector imaging products
do. Even if you purchase distribution licenses in
advance, you must file periodic reports with LEAD-
TOOLS indicating the number of copies deployed
both within your organization and to outside users,
unless you purchase a perpetual unlimited deploy-
ment license. Royalty amounts vary based on the
number of units shipped. For example, if you use
e

the document imaging product, the royalty varies
from US$75 per unit for quantities less than 50, to
US$1.50 per unit for quantities of 10,000 or more.

Although all of the functionality of LEADTOOLS
is implemented in a collection of DLLs, you have
your choice of two high-level interfaces to make
programming your graphics application easier. If
you’re working in Delphi or C++Builder, you’ll
want to use the VCL components. For other lan-
guages, use the ActiveX control.

Components
The main VCL component is the LeadImage con-
trol. This visual component lets you load images
from a file, the Internet, or memory, display the
image on a form, and apply any of the vast col-
lection of filters or effects that LEADTOOLS pro-
vides. You can scale the image to fit the control or
view the image full size. If the image doesn’t fit in
the LeadImage component, you can display a pan
window. The pan window, shown in Figure 1, is
a thumbnail with a red rectangle that outlines the
visible area of the image. Simply drag within the
thumbnail to reposition the visible area. It’s much
easier than using scrollbars to move around. Figure
2 shows the same flower scaled to fit the LeadIm-
age control, flipped, darkened, and with its hue
adjusted to add more green.

LEADTOOLS includes a LeadTwain component,
which lets you acquire images from any TWAIN
device, such as a scanner or digital camera. You
can display the device’s user interface to let users
set the acquisition parameters, or hide the device’s
built-in interface and design your own, passing all
settings to the device through properties of the
LeadImage component. The LeadIsis control pro-
vides the same image acquisition features for ISIS
devices, but only functions if you have one of the
document or medical versions of LEADTOOLS.

http://leadtools.com
http://leadtools.com

New & Used
If you need to provide screen-capture capabilities in your application,
simply drop a LeadScr component on a form, and you’re ready to
go. This component lets you capture the full screen, active window,
active client area, menu under the mouse cursor, window under the
mouse cursor, selected object, mouse cursor, or desktop wallpaper. If
these standard screen objects don’t meet your needs, you can capture
any area of the screen by specifying the size and location of one of
eight standard shapes, or by letting the user make a freehand selection
of the area to capture. You can also capture cursor, icon, and bitmap
resources from 16- and 32-bit DLL and EXE files.

The image common dialog box component provides a series of dialog
boxes similar to the Windows common dialog boxes, but with added
imaging features. It provides dialog boxes for File Open, File Save, all
of the image processing options, and all of the image effects. The File
Open dialog box provides a thumbnail preview of the image in the
selected file. All of the image processing and effects dialog boxes provide
a thumbnail preview that lets you see the effect before you apply it to
your image. An optional Help button is also available in each dialog box,
so you can easily integrate context-sensitive help for all of the features.

The image list component lets you display and manipulate a list of
images. You can think of the image list component as a visual TList
for images. Methods let you load images from, and save images to
files, insert images, remove images, and clear the entire list. A host
of properties let you control how the items in the list appear. These
32 December 2000 Delphi Informant Magazine

Figure 2: An image with altered hue and brightness.

Figure 1: The LeadImage control with a pan window displayed.
include everything from colors to whether the text associated with the
image is displayed with the image. A set of events, including OnClick,
OnDblClick, OnItemSelected, OnResize, OnScroll, and the mouse and
keyboard events inherited from TWinControl, make it easy for you to let
the user interact with the images in the image list in any way you wish.

To make it easy for users to select images from files, use the thumb-
nail browser component. This component scans a directory and
generates a thumbnail image for every image file in the directory.
The last component on the LEADTOOLS palette is the DICOM
component, which provides DICOM file support if you have one of
the medical imaging products.

Documentation
Although LEADTOOLS is a technically excellent toolkit and claims
to be the world leader with an impressive list of users (including
Microsoft, Hewlett-Packard, and Corel, to name a few), the docu-
mentation leaves something to be desired. The only printed docu-
mentation is a small manual that provides six pages of installation
instructions and 69 pages of marketing information about the LEAD-
TOOLS product line. Online documentation includes a 993-page
manual in PDF format, and a help file that contains the same infor-
mation. You can purchase the manual in printed form if you wish.

You would think that with this volume of information, everything you
need to know would be there — but I didn’t find that to be the case.
The manual is very long on topics that tell you what LEADTOOLS can
do, and very short on topics that tell you how to do it. For example, if
you search the manual for Screen Capture, you will find a section titled
“Implementing Screen Capture.” However, the only information in that
section is a description of what the screen capture component can do.
There is not one word about how to do it, nor is there any reference to
any other topic that describes how to capture screens.

Delphi and C++Builder developers are used to going to the help index,
entering a class name, and being taken to a topic that provides a descrip-
tion of the class and a list of all of the properties, methods, and events
for the class with each property, method, and event providing a link
to its own topic. If you search either the LEADTOOLS online help
or the manual for a component class name, such as TLeadImage, you
will find nothing. There is no way to find a topic that will give you a
list of the properties, methods, and events of any of the LEADTOOLS
components. If you know the name of a property, method, or event, you
can find its help topic, but the only way to find the names is to use the

LEADTOOLS 12 is an excellent graphics toolkit you can use as the
foundation for any application that needs to acquire, manipulate,
display, or print images in any common format. Although the docu-
mentation shortcomings of LEADTOOLS 12 make learning to use it
more difficult than it needs to be, this is still a superior product that
you should seriously consider.

Lead Technologies, Inc.
900 Baxter Street
Charlotte, NC 28204

Phone: (800) 637-4699 or (704) 332-5532
Web Site: http://www.leadtools.com
Price: US$495

http://leadtools.com

New & Used
Object Inspector for published properties and events; read the overview
chapters of the manual, which list some of the properties, methods, and
events; and browse the tutorial code and sample application.

There is a tutorial chapter for Delphi developers, and another for
C++Builder developers, that steps you through building programs
that demonstrate many of the features of LEADTOOLS. These chap-
ters are a very valuable resource, but even here there are problems.

Suppose you want to acquire an image from a TWAIN scanner. You
can go to the section in the Delphi tutorial titled “Creating a TWAIN
Project.” This tutorial consists of eight steps that tell you to drop a
LeadImage and a LeadTwain component on the main form, add four
lines of code to the form’s OnShow event handler to set the values of
four properties, run the program to test it, and save the project as the
starting point for other tasks in the tutorial. Testing the application
seems kind of silly because it’s obvious that the only thing it will
do is display a blank form. A natural step would be to move on
to the next section to learn how to actually acquire an image from
a TWAIN device. Whoops! The next section in the tutorial is on
creating, viewing, and merging color separations. Now what? Let’s go
back to the table of contents and find the next section in the tutorial
that deals with TWAIN. Whoops! There are no other sections that
mention the word TWAIN. Fortunately, because the manual is in
PDF format, you can do a global search for TWAIN and eventually,
you’ll find that the rest of the TWAIN example is buried in the section
named “Miscellaneous Examples” at the end of the tutorial chapter.

There is also an extensive demonstration application that shows
how to use most of the features of LEADTOOLS. Versions of the
33 December 2000 Delphi Informant Magazine
demonstration application are available for Delphi 4 and 5 and for
C++Builder 4 and 5. Unfortunately, there are problems here as well.
When you run the Delphi 5 version of the demonstration and choose
File | Browse from the menu, all you get is an error dialog box with
the message “GetDirectory: invalid parameter passed.”

Conclusion
LEADTOOLS is an excellent graphics toolkit that you can use as
the foundation for any application that needs to acquire, manipulate,
display, or print images in any common format. You cannot have this
much power without complexity and, as a result, the LEADTOOLS
components include a very large number of properties, methods,
and events that you’ll need to master. Although the documentation
shortcomings make learning to use the toolkit more difficult than it
needs to be, this is still a superior product that you should seriously
consider if you need to do high-end image processing. ∆

Bill Todd is president of The Database Group, Inc., a database consulting and develop-
ment firm based near Phoenix. He is co-author of four database programming books,
author of more than 60 articles, a Contributing Editor to Delphi Informant Magazine,
and a member of Team Borland, providing technical support on the Borland Internet
newsgroups. He is a frequent speaker at Borland Developer Conferences in the US and
Europe. Bill is also a nationally known trainer and has taught Delphi programming
classes across the country and overseas. He is currently a speaker on the Delphi Develop-
ment Seminars Kylix World Tour. Bill can be reached at bill@dbginc.com. For more
information on the Kylix World Tour, visit http://www.DelphiDevelopmentSeminars.com.

http://www.DelphiDevelopmentSeminars.com

TextFile
Interest in wireless application development
is exploding. Nearly every major portal, con-
tent provider, and eBusiness site is evolving
some form of wireless support for their ser-
vices. Given the current state of health in
the wireless communications market, it’s not
surprising, especially since this is the first
time in history that so much information can
be obtained through such a small, portable
communications device.

Naturally, the servers providing content to
desktop browsers have to be instructed how
to handle this new era of mobile information
interaction. And like the amazing effort that
went into the construction of the Internet,
many hard working developers will have to
rise to the challenge and expend the mental
effort to understand, practice, and instruct
others in wireless application development
best practices.

To that end, Ray Rischpater provides a
primer to the wide world of the wireless Web
in his Wireless Web Development. Although
the primary intended audience is existing
Web professionals, Ray’s coverage of topics
run the gamut from the rudiments of
HTML to specific server-side scripting tech-
nologies such as the open-sourced PHP lan-
guage. Given that the book is only 350
pages, covering such a broad spectrum of
information is tricky. And while Ray’s mad
dash through the various flavors of both pro-
prietary and open wireless standards is com-
mendable, the usefulness of the book to the
trained Web professional is diluted and less
valuable as a result.

On the positive side, Wireless Web Devel-
opment provides a fairly comprehensive,
albeit slightly dated, summary of the vari-

Wireless Web Development
34 December 2000 Delphi Informant Magazine
ous wireless infrastructures, protocols, and
markup languages available for the various
wireless and offline clients. Ray summarizes
in efficient prose some of the more com-
mercially visible markup variants, including
Palm’s Web Clipping Architecture, Avant-
Go’s channel service, Microsoft’s Channel
Definition Format for mobile devices
(i.e. Windows CE/Pocket PC clients),
Phone.com’s Handheld Device Markup
Language (HDML), and WAP Forum’s
Wireless Markup Language (WML). Addi-
tionally, Ray devotes a chapter to the
emerging, but sparsely implemented,
WMLScripting client-side language that’s
beginning to show up in high-end WAP-
enabled mobile devices.

I also enjoyed Ray’s conversational writing
style. Although this book is intended for
techies, Ray keeps the tone light and general
enough for an average reader to finish the
book in a day. As indicated earlier, however,
this generalization of the subject matter also
detracts from the book’s value.

Unfortunately, my list of negative aspects
regarding Wireless Web Development exceeds
its praises. I’m fairly adept at wireless applica-
tion development, which is one of the rea-
sons I was asked to review this title. This
background altered my expectations; I was
anticipating a much deeper discussion of
wireless Web development.

The book blazes through dynamic server-
side scripting, and the author exhibits a
bias toward PHP as the server script of
choice. Granted, this free, cross-platform,
open source technology is a worthwhile
contender in dynamic wireless content gen-
eration, but I would have preferred to also
see examples in ASP, JSP, CFML, and Perl/
CGI, which are more prevalent technologies
from an ISP-hosting point of view. Addi-
tionally, there are many more books pub-
lished on these languages than there are on
PHP. At the very least, I would have pre-
ferred to see an area dedicated to source
variants on Apress’ Web site along with the
book’s printed code listings.

On the topic of references, I was also
disappointed that Ray omitted a list of
free tools and services available to wireless
Web developers. In my own exploration,
I found Inetis’ DotWAP (available at
http://www.inetis.com/english/
solutions_dotwap.htm) to be a great
time saver when generating basic WML
cards. Additionally, WAPJAG (http://
www.wapjag.com) provides a free
Phone.com-like WML-compliant client
to view a broad range of Internet-
accessible WML content. Lastly, I really

http://www.inetis.com/english/solutions_dotwap.htm
http://www.inetis.com/english/solutions_dotwap.htm
http://www.wapjag.com
http://www.wapjag.com

TextFile
like Chami’s excellent and free HTML-Kit (available at
http://download.cnet.com/downloads/0-10070-100-
1507274.html?tag=st.dl.10001_103_1.lst.td), which offers a com-
mercial-grade Web scripting editor with full support for nearly every
major server and client-side Web language, including Ray’s prefer-
ence, PHP. Given that the book doesn’t include a CD-ROM, the
least it could provide is a more comprehensive list of tool resources.

Another unfortunate omission — one that would have been highly
beneficial as an appendix — is resolving the aggravating question
of how a wireless Web developer can effectively support the many
flavors of client-side scripts and presentation layers introduced in
the book. As it stands, an untrained developer might approach
the problem by manually creating multiple site sections for each
platform the developer wishes to support. Instead, even a cursory
introduction to an effectively designed n-tier architecture separating
data, business, and presentation logic would have communicated a
simple, yet powerful message: A well-designed foundation is crucial
to the success of any Web site’s scalability and support for the ever-
evolving wireless Web.

Finally, continuing the discussion of omissions, I would have pre-
ferred to see a keyword summary listing in separate appendices for
each of the scripting technologies introduced in the book. As it
35 December 2000 Delphi Informant Magazine
stands, developers expecting to use the title as a reference will find
it frustrating to have to leaf through chapter pages to locate a single
tag’s meaning.

As with most titles written by working professionals today, it’s obvi-
ous that the author spent many evenings and weekends of his valu-
able time to put into words his understanding of the subject matter.
I have no doubt that Ray is a talented Web developer who struggled
with what to discuss and what to leave out. On a positive note, I was
quite pleased that Ray’s book is one of the few general Web develop-
ment books that intelligently advocates the use of Unified Modeling
Language (UML). All of the sample program flows are illustrated
throughout the book in easy to understand UML diagrams, and Ray
even dedicates a full appendix to the language. Regrettably, there
simply aren’t enough of these appendices in the book to make it a
regular reference for wireless Web developers.

— Mike Riley

Wireless Web Development by Ray Rischpater, Apress, 901 Grayson
St., Berkeley, CA 94710-2617, http://www.apress.com.

ISBN: 1-893115-20-8
Price: US$34.95 (350 pages)

http://download.cnet.com/downloads/0-10070-100-1507274.html?tag=st.dl.10001_103_1.1st.td
http://download.cnet.com/downloads/0-10070-100-1507274.html?tag=st.dl.10001_103_1.1st.td
http://www.apress.com

TextFile
Advanced Delphi Developer’s Guide to ADO

When I met Dr Natalia Elmanova (one of
the authors) at last summer’s Inprise/Borland
Conference, she asked me immediately if I
would review this book. I didn’t know of it
at the time, so I gave her a tentative “yes.”
I should mention that I am quite selective
about the books and products I review; I
don’t enjoy slamming a work, or wasting
my time for that matter. When my copy of
Advanced Delphi Developer’s Guide to ADO
arrived, I realized I had no choice; I had to
review this book. Let’s find out why.

Providing a solid background for working
with ADO. The first observation I made
while reading the opening chapters was this:
The authors, Dr Elmanova and Alex Fedorov,
were real educators. Not only do they have a
solid grasp of the subject matter, they’re able
to present it in a very clear manner. To their
credit, they leave nothing to chance, making
few assumptions about the potential reader’s
level of knowledge or experience. I concur
with them that this book will be accessible
and valuable to those “programmers who are
already familiar with Delphi, but are novices
in using ADO.” In fact, the book assumes
little or no knowledge about database pro-
gramming, and devotes the opening chapter
to one of the most cogent introductions to
this topic I have ever seen.

As you may know, ADO (Microsoft ActiveX
Data Objects) is one of several technologies
that enable universal data access. Fortunately
for us, it’s a technology that Delphi supports.
In the second chapter, the authors discuss
ADO in its larger context, giving the reader an
excellent overview of what is available. Chap-
ter 3 discusses another of these technologies,
OLE DB, and provides the first code exam-
ples. Chapter 4 returns to more basic issues,
discussing the Delphi Database Architecture
and the components that support it.

The next three chapters are devoted to
ADO, exploring the basic components
TADOConnection, TADOCommand, and
TADODataSet. The next chapter exposes
three more ADO components that have par-
allels in Delphi’s standard database com-
36 December 2000 Delphi Informant Magazine
ponents: TADOTable, TADOQuery, and
TADOStoredProc. No database book would
be complete without a chapter on SQL,
and Advanced Delphi Developer’s Guide to
ADO includes a fine one. The first half of
the book ends with two chapters, “Working
with Database Objects” and “Building Data-
base Applications.”

Exploring advanced ADO topics. Having laid
a solid foundation in the first half, the second
half explores more advanced topics, such as
working with business graphics, reports, and
analysis systems using ADO and Delphi com-
ponents. Unfortunately, not every aspect of,
or extension to, ADO is covered by Delphi
components; the authors address this issue in
some of the remaining chapters. Chapter 15
and those that follow are longer and introduce
more difficult topics. Chapter 15, for exam-
ple, shows how to use type libraries to access
ADO MD (multidimensional) objects. Chap-
ter 16 explains ADO DLL and security exten-
sions; Chapter 17 covers Microsoft’s Jet and
Replication library; and Chapter 18 explains
the somewhat complicated issues of deploying
ADO applications built with Delphi.

The remaining chapters deal mostly with
issues surrounding distributed applications
using Microsoft’s Remote Data service, Bor-
land’s MIDAS, and the Microsoft Transaction
Server. The final chapter introduces the latest
version of ADO (2.5), which is an integral part
of Windows 2000. Before closing, I should
point out an area or two of weakness and alert
you to some issues in running the code.

One area that could be improved: running
the code. The weaknesses in this book are
quite minimal. While the index is good, it
should be more detailed. For example, at
various places in the book, the authors make
reference to Windows 2000, but there is no
reference to Windows 2000 in the index.

Another area I should warn you about con-
cerns running the applications. Of course most
readers who copy Delphi code from a CD to
their hard drive are already aware of the need
to change the read-only property of those files.
Another thing you’ll need to do is un-check
the Build with Run-time packages check box in
the Project Options dialog box. You’ll probably
already have an appropriate database installed
on your system; if not, you’ll need to take
care of that as well. Some good news: An
updated version of the code is available already
at http://d5ado.homepage.com.

To conclude, this is a most impressive work
— an excellent, well organized, and well writ-
ten treatise. The authors assume nothing in
terms of the reader’s background in database
programming or ADO. They provide you
with all of the background information you
might require, and build on that foundation
by providing an excellent exposition of ADO,
including some important advanced topics.
For any reader who will be creating Delphi
applications that use this important technol-
ogy, I recommend this book highly. It’s an
essential resource.

— Alan C. Moore, Ph.D.

Advanced Delphi Developer’s Guide to ADO
by Natalia Elmanova, Ph.D. and Alex Fedo-
rov, Wordware Publishing, Inc.,
2320 Los Rios Blvd., Plano, TX 75074,
http://www.wordware.com.

ISBN: 1-55622-758-2

http://d5ado.homepage.com
http://www.wordware.com

Best Practices
Directions / Commentary
All Developers Are in R&D

All developers are in R&D — or should be. Personal research (books, magazines, newsgroups, Web sites, and source
lcode) and development (hacking and side projects) are necessary if you’re to grow as a developer and adapt

to changing needs. In contrast, developers who concentrate only on their assigned tasks often harm themselves and
their employers.
It’s self-defeating to subscribe to the “begin coding as soon as
possible to finish the project as soon as possible” mindset. It’s
specious reasoning. Although it sounds sensible on the surface,
it often leads to chaos and project cancellation. It’s the same as
thinking that devoting all your time to a project (and thereby
neglecting research and development) is selfless and valorous.
Such self-sacrifice is deleterious to you and your employer or
client. Not opening up to better ways means you’re not doing
your best work.

Failing to aerate the brain and rejuvenate the creative juices
leads to an atrophy of spirit and an inbreeding of thought. To
quote Charlie Calvert on the importance of hacking from Delphi
Unleashed: “Most good programmers spend a large percentage of
their time hacking. If you run a programming shop and you
arrange things so that none of your programmers have time to
hack, you will end up with a group of very mediocre program-
mers. The best will either lose their skills, or more likely, head
for greener pastures.”

If we rely only on personal prior knowledge (been there, done that)
and hard work (I don’t have time to stop and sharpen the saw, I’ll just
work harder/faster), we are limiting our productivity.

What you don’t know can hurt you. An example of this is my
first program in Delphi 1. Its sole purpose was to return the day
of the week for a date entered by the user. I labored over this
little application, and wrote so much complex code, that I got
a run-time error for using up too much stack space. Finally, the
happy moment came when the code was broken up into smaller
methods, the stack space was increased, and the program was
debugged. It worked like a charm. No papa was prouder as I
showed off my baby.

Not much later, though, I discovered the standard Delphi DayOfWeek
function. I could have saved myself hours using this function and
writing just one line of code! To punish myself I re-wrote the applica-
37 December 2000 Delphi Informant Magazine
tion from scratch, using the preferred method. I finished in approxi-
mately 15 minutes. Yes, what you don’t know can come back to
chomp you on the gluteus maximus!

When you get a new version of Delphi, do you simply kick the tires
and take it for a spin, or do you also look under the hood? As Danny
Thorpe said: “Use the source, Luke!” Read it. Seek out the changes
from the last version. What do the new components do? What classes
have been added that don’t show up on the Component palette? What
functions are new to this version? It would be a shame to rewrite code
that has already been written, tested, and debugged for you. In Delphi
6 take a look at the new declaration of TComponent, the new utilities
in the Math unit, new units such as StrUtils, ConvUtils, DateUtils,
VarUtils, Bands, etc. Check out the IfThen, AnsiIndexText, Soundex,
and Metaphone functions. You won’t know they’re available if you don’t
look for them. Be curious; become a Delphi expert!

Expand your knowledge: Pick your colleagues’ brains, explore, and
experiment. Reading, sharing with others, and scouring OPC (other
people’s code), should give you countless ideas for utilities. Side
projects and hacking, and using technology or components differ-
ent from your usual group will expand your horizons. Write a
database application using a different DBMS and/or engine. Write
components that answer tricky programming challenges or Delphi
FAQs, so you can say: “Just use this component; the functionality
you’re after is automatically provided.” The possibilities for personal
advancement and self-expression are virtually endless. Grab them
before they grab you. Innovate or stagnate! ∆

— Clay Shannon

Clay Shannon is an independent Delphi consultant based in northern Idaho. He is
available for Delphi consulting work in the greater Spokane/Coeur d’Alene areas,
remote development (no job too small!), and short-term or part-time assignments
in other locales. Clay is a certified Delphi 5 developer, and is the author of Develop-
er’s Guide to Delphi Troubleshooting [Wordware, 1999]. You can reach him at
bclayshannon@earthlink.net.

File | New
Directions / Commentary
The Delphi Toolbox: In the Bin

I iwrote the first in this series of columns a year or so ago to concentrate on third-party tools, components, and libraries,
iproviding mini reviews along with tips and techniques. Recently I realized that there are a number of hidden gems —

useful but little-known utilities — that come with Delphi. All of these can be found in the Delphi\Bin folder, and many
go back to early versions of Turbo Pascal.
Command-line utilities. To learn the syntax and options for com-
mand-line utilities, you can usually either type the name alone, or the
name with a question mark (?) at the command prompt. One of the
veterans of Turbo Pascal is TPC.EXE, the command-line compiler,
with its new name DCC32.EXE. Its long list of available switches
provides you with the many compilation options available in the
Delphi IDE. You may be wondering, “Why use such a cumbersome
tool when you have the IDE available and can simply click with the
mouse?” In the old days, one motivation was memory — more was
available at the command prompt than in an IDE. That’s not such an
issue in compiling large programs today. Another reason for using this
fast compiler is to automate compilation of multiple units in a batch
or “make” file, a technique used by third parties when they distribute
patches to their libraries.

Let’s make it. Another venerable utility, MAKE.EXE, is a program
manager for compiling programs with specific options. Those options
are listed in a text file that generally has a *.mak extension.

Make files, which are similar to batch files, can be used to automate many
processes: from building large complex projects, to compiling resource
files. Delphi comes with a large make file called, of all things, Makefile!
If you have Turbo Assembler and other required files, you can run this
with a recent version of MAKE.EXE to rebuild the entire VCL from
the command line. You can also edit the file to create either a debug or
non-debug version of the library. On the command line you can specify
options (including the make file to use), and one or more target files.

Other options include specifying whether to conduct auto-dependency
checks, providing the name of an include directory, and indicating
whether to ignore encountered errors. You can do a lot in the main
make file, such as defining macros. These can serve as shortcuts to exe-
cutable files (usually compilers), including their full path and options.
You can also define explicit rules and implicit rules. Implicit rules are
generalizations of the explicit rules and help to simplify a make file.

Get a grep or dump it. What’s this grep thing all about? Consider
this scenario: Months ago you wrote a wonderful utility that
accomplished its task perfectly, but now you’ve forgotten which
programs it’s in. You do remember the name of the routine, so
it’s grep.exe to the rescue! This fast file-searching utility provides
a plethora of options, including word search, regular expression
search, inclusion or exclusion character set searches, and more. Best
of all, it’s freely available with every version of Delphi.
38 December 2000 Delphi Informant Magazine
TDump.exe is well named. This utility will literally dump a ton
of information about an executable file to the screen. It lists the
DOS file size, load-image size, header size, minimum and maximum
memory requirement, program entry point, CPU type, O/S version,
various flags and offsets, code and data sizes, and base locations. It
provides information about exports and imports, resources, object
tables, imports from Windows DLLs, and much more.

One final command-line tool might be helpful in certain circum-
stances. Convert.exe provides a quick and easy way to convert one
or more Delphi form files to either text or binary formats. You
have the option of converting the file in-place, overwriting the
input file.

Wizards. In addition to the command-line tools we’ve been dis-
cussing, there are many useful Wizards in the \Bin subdirectory.
Some are integrated into the Delphi IDE; others can be easily
added to the Tools menu. There are several tools for managing
databases (not available in all editions), including the BDE Admin-
istrator, which lets you configure the Borland Database Engine
(BDE) among other tasks; Database Explorer, for browsing and
editing database objects; and tools for working with SQL. The
Image Editor is a useful tool that provides an easy way to work
with graphic files you use in your applications, e.g. icons, cursors,
and bitmaps. Finally, WinSight is a debugging tool that provides
information about window classes, windows, and messages. For
more information on these and other tools, look under Delphi
Productivity Tools in the Delphi Help file.

Remember, before you go looking for a solution from a third-party
source, check out what’s available with Delphi. You just might discover
the solution to your problem “in the bin.” Until next time... ∆

— Alan C. Moore, Ph.D.

Alan Moore is a Professor of Music at Kentucky State University, specializing in music
composition and music theory. He has been developing education-related applications
with the Borland languages for more than 15 years. He is the author of The Tomes
of Delphi: Win 32 Multimedia API [Wordware Publishing, 2000] and co-author (with
John Penman) of an upcoming book in the Tomes series on Communications APIs. He
has also published a number of articles in various technical journals. Using Delphi, he
specializes in writing custom components and implementing multimedia capabilities
in applications, particularly sound and music. You can reach Alan on the Internet at
acmdoc@aol.com.

	Table of Contents
	Symposium
	I ’ve Got a Secret

	Delphi Tools
	Opaque Software Announces WithPalette 5 and WithView 5
	Global Majic Announces 3DLinX
	SilverLakeTech.com Announces PC Data Finder
	TurboPower Announces Sleuth QA Suite 2
	SkyLine Tools Imaging Releases Doc-to-Net 6.0
	Quest Announces Optional Module for TOAD
	eHelp Launches RoboHELP Office 9.0
	4Tier Software Announces OpenMOM
	Advanced Software Technologies Unveils GDPro 5.0

	Delphi News
	It ’s Time to Vote in the Delphi Informant Magazine Readers Choice Awards
	Inprise/Borland Announces JBuilder 4
	Inprise/Borland Announces Availability of Inprise Application Server 4.1
	Inprise/Borland to Support Intel Itanium Processor

	In Development
	Implementing COM+Events
	A Hypothetical Retail Application
	COM+Event Infrastructure
	Publishing Events
	Subscribing to Events
	Subscriber Filters
	A Sample Application
	Conclusion

	On Language
	New List Objects
	The TList Class
	The TObjectList Class
	The TComponentList Class
	The TClassList Class
	TOrderedList ,TStack,and TQueue Classes
	TObjectStack and TObjectQueue Classes
	The TIntList Class
	Conclusion
	Begin Listing One —TClassList
	Begin Listing Two —TMyObjectList
	Begin Listing Three —TObjectStack and TObjectQueue
	Begin Listing Four — TMyObjectStack and TMyObjectQueue
	Begin Listing Five — IntList..pas

	Greater Delphi
	Two Office Web Components
	The ChartSpace Component
	Charts Based on Static Data
	Charts Based on Data from a Database
	Using DataSource from the OWC
	Using an ADO Data Source
	Creating the Chart
	Charts Based on Spreadsheet Data
	The Spreadsheet Component
	Setting Colors
	Conclusion

	At Your Fingertips
	24 At Your Fingertips Custom Menus,Text,Lines /Delphi 4,5 By Bruno Sonnino Fancy Menus,etc. var begin end ; Figure 1:text correctly.
	Custom Fonts and Sizes
	Custom Shapes and Bitmaps
	Rotated Text
	Stylish Lines
	Conclusion

	Case Study
	ASSESS
	The Low-Down on ASSESS
	The Issues
	Delphi to the Rescue
	The Aftermath

	New &Used
	LEADTOOLS Raster Imaging 12
	The LEADTOOLS Family
	Components
	Documentation
	Conclusion

	TextFile
	Wireless Web Development

	TextFile
	Advanced Delphi Developer ’s Guide to ADO

	Best Practices
	All Developers Are in R&D

	File |New
	The Delphi Toolbox:In the Bin

	kylecordes.com
	BDE Alternatives Guide

